Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.047

Chronicles of EGFR Tyrosine Kinase Inhibitors: Targeting EGFR C797S Containing Triple Mutations  

Duggirala, Krishna Babu (Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
Lee, Yujin (Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
Lee, Kwangho (Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology)
Publication Information
Biomolecules & Therapeutics / v.30, no.1, 2022 , pp. 19-27 More about this Journal
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase widely expressed in many cancers such as non-small cell lung cancer (NSCLC), pancreatic cancer, breast cancer, and head and neck cancer. Mutations such as L858R in exon 21, exon 19 truncation (Del19), exon 20 insertions, and others are responsible for aberrant activation of EGFR in NSCLC. First-generation EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib have clinical benefits for EGFR-sensitive (L858R and Del19) NSCLC patients. However, after 10-12 months of treatment with these inhibitors, a secondary T790M mutation at the gatekeeper position in the kinase domain of EGFR was identified, which limited the clinical benefits. Second-generation EGFR irreversible inhibitors (afatinib and dacomitinib) were developed to overcome this T790M mutation. However, their lack of selectivity toward wild-type EGFR compromised their clinical benefits due to serious adverse events. Recently developed third-generation irreversible EGFR TKIs (osimertinib and lazertinib) are selective toward driving mutations and the T790M mutation, while sparing wild-type EGFR activity. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S, the key residue cysteine that forms covalent bonds with irreversible inhibitors. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are not effective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism.
Keywords
EGFR; NSCLC; Acquired resistance; T790M; C797S; TKIs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lai, A. C. and Crews, C. M. (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101-114.   DOI
2 Singh, B., Carpenter, G. and Coffey, R. J. (2016) EGF receptor ligands: recent advances. F1000Res. 5, 2270.   DOI
3 Tinivella, A. and Rastelli, G. (2018) Investigating the selectivity of allosteric inhibitors for mutant T790M EGFR over wild type using molecular dynamics and binding free energy calculations. ACS Omega 3, 16556-16562.   DOI
4 Tzahar, E., Waterman, H., Chen, X., Levkowitz, G., Karunagaran, D., Lavi, S., Ratzkin, B. J. and Yarden, Y. (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276-5287.   DOI
5 Vyse, S. and Huang, P. H. (2019) Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct. Target. Ther. 4, 5.   DOI
6 Wang, Y., Guo, Z., Li, Y. and Zhou, Q. (2016) Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma. Open Med. (Wars.) 11, 68-77.   DOI
7 Wee, P. and Wang, Z. (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9, 52.   DOI
8 Bhullar, K. S., Lagaron, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P. and Rupasinghe, H. P. V. (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer 17, 48.   DOI
9 Lategahn, J., Keul, M., Klovekorn, P., Tumbrink, H. L., Niggenaber, J., Muller, M. P., Hodson, L., Flasshoff, M., Hardick, J., Grabe, T., Engel, J., Schultz-Fademrecht, C., Baumann, M., Ketzer, J., Muhlenberg, T., Hiller, W., Gunther, G., Unger, A., Muller, H., Heimsoeth, A., Golz, C., Blank-Landeshammer, B., Kollipara, L., Zahedi, R. P., Strohmann, C., Hengstler, J. G., van Otterlo, W. A. L., Bauer. S. and Rauh, D. (2019) Inhibition of osimertinib-resistant epidermal growth factor receptor EGFR-T790M/C797S. Chem. Sci. 10, 10789-10801.   DOI
10 Du, Z. and Lovly, C. M. (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58.   DOI
11 Carpenter, C. D., Ingraham, H. A., Cochet, C., Walton, G. M., Lazar, C. S., Sowadski, J. M., Rosenfeld, M. G. and Gill, G. N. (1991) Structural analysis of the transmembrane domain of the epidermal growth factor receptor. J. Biol. Chem. 266, 5750-5755.   DOI
12 Midha, A., Dearden, S. and McCormack, R. (2015) EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 5, 2892-2911.
13 Li, A. R., Chitale, D., Riely, G. J., Pao, W., Miller, V. A., Zakowski, M. F., Rusch, V., Kris, M. G. and Ladanyi, M. (2008) EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression. J. Mol. Diagn. 10, 242-248.   DOI
14 Lin, Y., Wang, X. and Jin, H. (2014) EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am. J. Cancer Res. 4, 411-435.
15 Maity, S., Pai, K. S. R. and Nayak, Y. (2020) Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep. 72, 799-813.   DOI
16 Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P. and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648.   DOI
17 Purba, E. R., Saita, E. I. and Maruyama, I. N. (2017) Activation of the EGF receptor by ligand binding and oncogenic mutations: the "rotation model". Cells 6, 13.   DOI
18 Zarogoulidis, P., Lampaki, S., Chinelis, P., Lazaridis, G., Baka, S. and Rapti, A. (2016) Tyrosine kinase inhibitors for non-small cell lung cancer and eye metastasis: disease relapse or a new entity? Med. Hypothesis Discov. Innov. Ophthalmol. 5, 132-135.
19 De Clercq, D. J. H., Heppner, D. E., To, C., Jang, J., Park, E., Yun, C. H., Mushajiang, M., Shin, B. H., Gero, T. W., Scott, D. A., Janne, P. A., Eck, M. J. and Gray, N. S. (2019) Discovery and optimization of dibenzodiazepinones as allosteric mutant-selective EGFR inhibitors. ACS Med. Chem. Lett. 10, 1549-1553.   DOI
20 Ferguson, K. M., Berger, M. B., Mendrola, J. M., Cho, H. S., Leahy, D. J. and Lemmon, M. A. (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507-517.   DOI
21 Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M. and Boyle, P. (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18, 581-592.   DOI
22 Finlay, M. R., Anderton, M., Ashton, S., Ballard, P., Bethel, P. A., Box, M. R., Bradbury, R. H., Brown, S. J., Butterworth, S., Campbell, A., Chorley, C., Colclough, N., Cross, D. A., Currie, G. S., Grist, M., Hassall, L., Hill, G. B., James, D., James, M., Kemmitt, P., Klinowska, T., Lamont, G., Lamont, S. G., Martin, N., McFarland, H. L., Mellor, M. J., Orme, J. P., Perkins, D., Perkins, P., Richmond, G., Smith, P., Ward, R. A., Waring, M. J., Whittaker, D., Wells, S. and Wrigley, G. L. (2014) Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem. 57, 8249-8267.   DOI
23 Tokudome, N., Koh, Y., Akamatsu, H., Fujimoto, D., Okamoto, I., Nakagawa, K., Hida, T., Imamura, F., Morita, S. and Yamamoto, N. (2020) Differential significance of molecular subtypes which were classified into EGFR exon 19 deletion on the first line afatinib monotherapy. BMC Cancer 20, 103.   DOI
24 Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M. and Eck, M. J. (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217-227.   DOI
25 Abdallah, S. M. and Hirsh, V. (2018) Irreversible tyrosine kinase inhibition of epidermal growth factor receptor with afatinib in EGFR activating mutation-positive advanced non-small-cell lung cancer. Curr. Oncol. 25, S9-S17.   DOI
26 Akazawa, Y., Saito, Y., Yoshikawa, T., Saito, K., Nosaka, K., Shimomura, M., Mizuno, S., Nakamoto, Y. and Nakatsura, T. (2020) Efficacy of immunotherapy targeting the neoantigen derived from epidermal growth factor receptor T790M/C797S mutation in non-small cell lung cancer. Cancer Sci. 111, 2736-2746.   DOI
27 Travis, W. D., Brambilla, E., Noguchi, M., Nicholson, A. G., Geisinger, K. R., Yatabe, Y., Beer, D. G., Powell, C. A., Riely, G. J., Van Schil, P. E., Garg, K., Austin, J. H., Asamura, H., Rusch, V. W., Hirsch, F. R., Scagliotti, G., Mitsudomi, T., Huber, R. M., Ishikawa, Y., Jett, J., Sanchez-Cespedes, M., Sculier, J. P., Takahashi, T., Tsuboi, M., Vansteenkiste, J., Wistuba, I., Yang, P. C., Aberle, D., Brambilla, C., Flieder, D., Franklin, W., Gazdar, A., Gould, M., Hasleton, P., Henderson, D., Johnson, B., Johnson, D., Kerr, K., Kuriyama, K., Lee, J. S., Miller, V. A., Petersen, I., Roggli, V., Rosell, R., Saijo, N., Thunnissen, E., Tsao, M. and Yankelewitz, D. (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 6, 244-285.   DOI
28 Walton, G. M., Chen, W. S., Rosenfeld, M. G. and Gill, G. N. (1990) Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates. J. Biol. Chem. 265, 1750-1754.   DOI
29 Yu, H. A. and Riely, G. J. (2013) Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in lung cancers. J. Natl. Compr. Canc. Netw. 11, 161-169.   DOI
30 Zhang, X., Gureasko, J., Shen, K., Cole, P. A. and Kuriyan, J. (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137-1149.   DOI
31 Gazdar, A. F. (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28, S24-S31.   DOI
32 Goldberg, M. E., Montesion, M., Young, L., Suh, J., Greenbowe, J., Kennedy, M., Giaccone, G., Akerley, W. L., Dowlati, A., Creelan, B. C., Hicks, J. K., Hesketh, P. J., Kelly, K. L., Riess, J. W., Miller, V. A., Stephens, P. J., Frampton, G. M., Ali, S., Gregg, J. P. and Albacker, L. A. (2018) Multiple configurations of EGFR exon 20 resistance mutations after first- and third-generation EGFR TKI treatment affect treatment options in NSCLC. PLoS ONE 13, e0208097.   DOI
33 Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T. and Mitsudomi, T. (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 64, 8919-8923.   DOI
34 Harrison, P. T., Vyse, S. and Huang, P. H. (2020) Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol. 61, 167-179.   DOI
35 Jang, J., To, C., De Clercq, D. J. H., Park, E., Ponthier, C. M., Shin, B. H., Mushajiang, M., Nowak, R. P., Fischer, E. S., Eck, M. J., Janne, P. A. and Gray, N. S. (2020) Mutant-selective allosteric EGFR degraders are effective against a Broad Range of drug-resistant mutations. Angew. Chem. 59, 14481-14489.   DOI
36 Kishikawa, T., Kasai, T., Okada, M., Nakachi, I., Soda, S., Arai, R., Takigami, A. and Sata, M. (2020) Osimertinib, a third-generation EGFR tyrosine kinase inhibitor: a retrospective multicenter study of its real-world efficacy and safety in advanced/recurrent non-small cell lung carcinoma. Thorac. Cancer 11, 935-942.   DOI
37 Ciardiello, F. and Tortora, G. (2008) EGFR antagonists in cancer treatment. N. Engl. J. Med. 358, 1160-1174.   DOI
38 Morrow, M. R. and Grant, C. W. (2000) The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Biophys. J. 79, 2024-2032.   DOI
39 Niederst, M. J., Hu, H., Mulvey, H. E., Lockerman, E. L., Garcia, A. R., Piotrowska, Z., Sequist, L. V. and Engelman, J. A. (2015) The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin. Cancer Res. 21, 3924-3933.   DOI
40 Batzer, A. G., Rotin, D., Urena, J. M., Skolnik, E. Y. and Schlessinger, J. (1994) Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol. 14, 5192-5201.   DOI
41 Finigan, J. H., Downey, G. P. and Kern, J. A. (2012) Human epidermal growth factor receptor signaling in acute lung injury. Am. J. Respir. Cell Mol. Biol. 47, 395-404.   DOI
42 Gao, X., Le, X. and Costa, D. B. (2016) The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer. Expert Rev. Anticancer Ther. 16, 383-390.   DOI
43 Grabe, T., Lategahn, J. and Rauh, D. (2018) C797S resistance: the undruggable EGFR mutation in non-small cell lung cancer? ACS Med. Chem. Lett. 9, 779-782.   DOI
44 Kenfield, S. A., Wei, E. K., Stampfer, M. J., Rosner, B. A. and Colditz, G. A. (2008) Comparison of aspects of smoking among the four histological types of lung cancer. Tob. Control 17, 198-204.   DOI
45 Ko, B., Paucar, D. and Halmos, B. (2017) EGFR T790M: revealing the secrets of a gatekeeper. Lung Cancer 8, 147-159.   DOI
46 Lee, S., Kim, J., Duggirala, K. B., Go, A., Shin, I., Cho, B. C., Choi, G., Chae, C. H. and Lee, K. (2018) Allosteric inhibitor TREA-0236 containing non-hydrolysable quinazoline-4-one for EGFR T790M/C797S mutants inhibition. Bull. Korean Chem. Soc. 39, 895-898.   DOI
47 Piotrowska, Z., Niederst, M. J., Karlovich, C. A., Wakelee, H. A., Neal, J. W., Mino-Kenudson, M., Fulton, L., Hata, A. N., Lockerman, E. L., Kalsy, A., Digumarthy, S., Muzikansky, A., Raponi, M., Garcia, A. R., Mulvey, H. E., Parks, M. K., DiCecca, R. H., Dias-Santagata, D., Iafrate, A. J., Shaw, A. T., Allen, A. R., Engelman, J. A. and Sequist, L. V. (2015) Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 5, 713-722.   DOI
48 Kobayashi, Y. and Mitsudomi, T. (2016) Not all epidermal growth factor receptor mutations in lung cancer are created equal: perspectives for individualized treatment strategy. Cancer Sci. 107, 1179-1186.   DOI
49 Eck, M. J. and Yun, C. H. (2010) Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim. Biophys. Acta 1804, 559-566.   DOI
50 Karachaliou, N., Fernandez-Bruno, M., Bracht, J. W. and Rosell, R. (2018) EGFR first- and second-generation TKIs-there is still place for them in EGFR-mutant NSCLC patients. Transl. Cancer Res. 8, S23-S47.
51 Lu, X., Yu, L., Zhang, Z., Ren, X., Smaill, J. B. and Ding, K. (2018) Targeting EGFR(L858R/T790M) and EGFR(L858R/T790M/C797S) resistance mutations in NSCLC: current developments in medicinal chemistry. Med. Res. Rev. 38, 1550-1581.   DOI
52 Pao, W. and Chmielecki, J. (2010) Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer 10, 760-774.   DOI
53 Roskoski, R., Jr. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 79, 34-74.   DOI
54 Schalm, S. S., Dineen, T., Lim, S. M., Park, C. W., Hsieh, J., Woessner, R., Zhang, Z., Wilson, K., Eno, M., Wilson, D., Williams, B., Campbell, J., De Savi, C., Stevison, F., Utt, C., Guzi, T., Dorsch, M., Hoeflich, K. and Chul Cho, B. C. (2020) 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann. Oncol. 31, S839.
55 Sharma, S. V., Bell, D. W., Settleman, J. and Haber, D. A. (2007) Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169-181.   DOI
56 Tanner, K. G. and Kyte, J. (1999) Dimerization of the extracellular domain of the receptor for epidermal growth factor containing the membrane-spanning segment in response to treatment with epidermal growth factor. J. Biol. Chem. 274, 35985-35990.   DOI
57 Jia, Y., Yun, C. H., Park, E., Ercan, D., Manuia, M., Juarez, J., Xu, C., Rhee, K., Chen, T., Zhang, H., Palakurthi, S., Jang, J., Lelais, G., DiDonato, M., Bursulaya, B., Michellys, P. Y., Epple, R., Marsilje, T. H., McNeill, M., Lu, W., Harris, J., Bender, S., Wong, K. K., Janne, P. A. and Eck, M. J. (2016) Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534, 129-132.   DOI
58 Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R. and Johnson, D. H. (2006) Paclitaxel-carboplatin alone or with bevacizumab for Non-small-cell lung cancer. N. Engl. J. Med. 355, 2542-2550.   DOI