DOI QR코드

DOI QR Code

Anti-invasive Activity of Human Breast Carcinoma Cells by Genistein through Modulation of Tight Junction Function

인체유방암세포의 tight junction 기능 조절을 통한 genistein의 암세포 침윤 억제 효과

  • Kim, Sung-Ok (Department of Biomaterial Control (BK21 program), Graduate School, Dongeui University College of Oriental Medicine) ;
  • Jeang, Yang-Kee (Department of Biotechnology, College of Natural Resources and Life Science and BK21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Choi, Yung-Hyun (Department of Biomaterial Control (BK21 program), Graduate School, Dongeui University College of Oriental Medicine)
  • 김성옥 (동의대학교 대학원 바이오물질제어학과) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 최영현 (동의대학교 대학원 바이오물질제어학과)
  • Published : 2009.09.30

Abstract

Tight junctions (TJs) that act as paracellular permeability barriers play an essential role in regulating the diffusion of fluid, electrolytes and macromolecules through the paracellular pathway. In this study, we investigated the correlation between the tightening of TJs, permeability and the invasive activity of genistein - a bioactive isoflavone of soybeans - in human breast carcinoma MCF-7 and MDA-MB-231 cells. The inhibitory effects of genistein on cell proliferation, motility and invasiveness were found to be associated with the increased tightness of the TJs, which was demonstrated by an increase in transepithelial electrical resistance and a decrease in paracellular permeability. Additionally, the immunoblotting results indicated that genistein repressed the levels of the proteins that comprise the major components of TJ, claudin-3 and claudin-4, which play a key role in the control and selectivity of paracellular transport. Furthermore, genistein decreased the metastasis-related gene expressions of insulin like growth factor-1 receptor and snail, while concurrently increasing that of thrombospondin-1 and E-cadherin. In addition, we demonstrated that claudins play an important role in the anti-motility and invasiveness of genistein using claudin-3 small interfering RNA. Taken together, our results indicate a possible role for genistein as an inhibitor of cancer cell invasion through the tightening of TJs, which may counteract the up-regulation of claudins. In addition, our results indicate that this may be beneficial for the inhibition of tumor metastasis.

Tight junctions (TJs)은 인접된 세포 사이의 전해질 및 거대분자 확산 조절에 관여하는 paracellular permeability의 장벽 역할을 한다. 본 연구에서는 MCF-7 및 MDA-MB-231 인체유방암세포에서 대두의 대표적인 생리활성물인 genistein에 의한 암세포의 침윤 억제에서 TJs의 견고성 및 투과성과의 연관성을 조사하였다. 본 연구의 결과에 의하면 genistein에 의한 유방암세포의 증식 억제, 암세포 이동성의 저하 및 침윤성의 억제는 TJs의 증가된 견고성과 연관이 있었으며, 이를 transepithelial electrical resistance의 증가 및 paracellular permeability의 감소로 확인하였다. Genistein은 두 유방암세포에서 TJs의 주요 조절 단백질로서 paracellular transport 조절에 중요한 역할을 하는 claudin-3 및 claudin-4의 발현을 억제시켰다. 그리고 genistein은 암세포의 전이 조절 관련 유전자들인 like growth factor-1 receptor 및 snail의 발현을 억제하였으며, thrombospondin-1 및 E-cadherin의 발현은 증가시켰다. 또한 small interfering RNA를 이용하여 genistein의 유방암세포의 침윤 억제에서 claudin-3단백질의 중요성을 확인하였다. 결론적으로 genistein이 TJs의 견고성 증가를 통하여 암세포의 침윤성을 억제할 수 있었으며, 이 과정에서 아마도 claudin 단백질의 발현 증가가 중요한 역할을 하고 있음을 알 수 있었다. 본 연구의 결과는 genistein이 종양 전이억제를 효과적으로 차단할 수 있음을 보여주는 것이다.

Keywords

References

  1. Adlercruetz, C. H, B. R Goldin, S. L. Gorbach, K. A. V. Hockerstedt, S. Watanabe, E. Hamalainen, M. H Markkanen, T. H Makela, K. T. Wahala, T. A. Hase, and T. Fotsis. 1996. Soybean phytoestrogen intake and cancer risk. J. Nutr. 125, 757S-770S
  2. Agarwal, R, T. D'Souza, and P. J. Morin. 2005. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 65, 7378-7385 https://doi.org/10.1158/0008-5472.CAN-05-1036
  3. Anderson, J. M. 2006. Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. 16, 126-130
  4. Barnes, S. 1995. Effect of genistein on in vitro and in vivo models of cancer. J. Nutr. 125, 777-783S
  5. Battle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Braulidia, and A. G. Herreros. 2001. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat. Cell BioI. 2, 84-89 https://doi.org/10.1038/35000034
  6. Castle, V. P., V. M. Dixt, and P. J. Polverini. 1997. Thrombospondin-1 suppresses tumorigenesis and angiogenesis in serum- and anchorage-independent NIH 3T3 cells. Lab. Invest. 77, 51-61
  7. Choi, Y. H, L. Zhang, W. H Lee, and K. Y. Park. 1998. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol. 13, 391-396
  8. Choi, Y. H L., W. H Lee, K. Y. Park, and L. Zhang. 2000. p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164-173 https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  9. Christofori, G. 2006. New signals from the invasive front. Nature 441, 444-450 https://doi.org/10.1038/nature04872
  10. Cunningham, S. c., F. Kamangar, M. P. Kim, S. Hammoud, R Haque, C. A. Iacobuzio-Donahue, A. Maitra, R Ashfaq, S. Hustinx, R E. Heitmiller, M. A. Choti, K. D. Lillemoe, J. L. Cameron, C. J. Yeo, R Schulick, and E. Montgomery. 2004. Claudin-4, mitogen activated protein kinase kinase 4, and stratifin are markers of gastric adenocarcinoma precursor lesions. Cancer Epidemiol. Biomarkers Prevo 15, 281-287 https://doi.org/10.1158/1055-9965.EPI-05-0539
  11. Dejana, E., M. J. Lampugnani, O. Martinez-Estrada, and G. Bazzoni. 2000. The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int. J. Dev. Biol. 44, 743-748
  12. Dunn, S. E., M. Ehrlich, J. H Sharp, K. Reiss, G. Solomon, R Hawkins, R Baserga, and J. c. Barrett. 1998. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 58, 3353-3361
  13. de Fraipont, F., A. C. Nicholson, J. J. Feige, and E. G. Van Meir. 2001. Thrombospondins and tumor angiogenesis. Trends Mol. Med. 7, 401-407 https://doi.org/10.1016/S1471-4914(01)02102-5
  14. Frisch, S. M. and E. Ruoslahti. 1997. Integrins and anoikis. Curro Opin. Cell BioI. 9, 701-706 https://doi.org/10.1016/S0955-0674(97)80124-X
  15. Hewitt, K. J., R Agarwal, and P. J. Morin. 2006. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6, 186-193 https://doi.org/10.1186/1471-2407-6-186
  16. Itoh, M. and M. J. Bissell. 2003. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J. Mammary Gland BioI. Neoplasia 8, 449-462 https://doi.org/10.1023/B:JOMG.0000017431.45314.07
  17. Jiao, K. Jiao, K. Miyazaki, and Y. Kitajima. 2002. Inverse correlation of E-cadherin and Snail expression in hepatocellular cell lines in vitro and in vivo. Br. J. Cancer 86, 98-101 https://doi.org/10.1038/sj.bjc.6600017
  18. Jimenez, B., O. V. Vol pert, S. E. Crawford, M. Febbraio, R L. Silverstein, and N. Bouck. 2000. Signals leading to apopto sis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med. 6, 41-48 https://doi.org/10.1038/71517
  19. Jin, C. Y., C. Park, J. Cheong, B. T. Choi, T. H Lee, J. D. Lee, W. H. Lee, G. Y. Kim, C. H Ryu, and Y. H Choi. 2007. Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3. Cancer Lett. 257, 56-64 https://doi.org/10.1016/j.canlet.2007.06.019
  20. Kominsky, S. L., P. Argani, D. Korz, E. Evron, V. Raman, E. Garrett, A. Rein, G. Sauter, O. P. Kallioniemi, and S. Sukumar. 2003. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22, 2021-2033 https://doi.org/10.1038/sj.onc.1206199
  21. Kominsky, S. L., B. Tyler, J. Sosnowski, K. Brady, M. Doucet, D. Nell, J. G. Smedley 3rd, B. McClane, H Brem, and S. Sukumar. 2007. Clostridium perfringens enterotoxin as a novel-targeted therapeutic for brain metastasis. Cancer Res. 67, 7977-7982 https://doi.org/10.1158/0008-5472.CAN-07-1314
  22. Kominsky, S. L. 2006. Claudins: emerging targets for cancer therapy. Expert Rev. Mol. Med. 8, 1-11
  23. Kominsky, S. L., M. Vali, D. Korz, T. G. Gabig, S. A. Weitzman, P. Argani, and S. Sukumar. 2004. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am. J. Pathol. 164, 1627-1633 https://doi.org/10.1016/S0002-9440(10)63721-2
  24. Kousidou, O. c., T. N. Mitropoulou, A. E. Roussidis, D. Kletsas, A. D. Theocharis, and N. K. Karamanos. 2005. Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int. J. Oncol. 26, 1101-1109
  25. Lawler, J. 2002. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell Mol. Med. 6, 1-12 https://doi.org/10.1111/j.1582-4934.2002.tb00307.x
  26. Liotta, L. A. and E. C. Kohn. 2001. The microenvironment of the tumor-host interface. Nature 411, 375-379 https://doi.org/10.1038/35077241
  27. Long, L., R Rubin and P. Brodt. 1998. Enhanced invasion and liver colonization by lung carcinoma cells overexpressing the type 1 insulin-like growth factor receptor. Exp. Cell Res. 238, 116-121 https://doi.org/10.1006/excr.1997.3814
  28. Luo, L D. M. Lubaroff, and M. J. Hendrix. 1999. Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res. 59, 3552-3556
  29. Magee, P. L H McGlynn, and I. R. Rowland. 2004. Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Lett. 208, 35-41 https://doi.org/10.1016/j.canlet.2003.11.012
  30. Micht P., C. Barth, and M. Buchholz. 2003. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res. 63, 6265-6271
  31. Morin, P. 2005. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 65, 9603-9606 https://doi.org/10.1158/0008-5472.CAN-05-2782
  32. Morita, K, M. Furuse, K Fujimoto, and S. Tsukita. 1999. Claudin multigene family encoding four-transmembrane domain protein components of thigh junction strands. Proc. Natl. Acad. Sci. USA 96, 511-516 https://doi.org/10.1073/pnas.96.2.511
  33. Mullin, J. M., N. Agostino, E. Rendon-Huerta, and J. J. Thornton. 2005. Epithelial and endothelial barriers in human disease. Drug Discovery Today 10, 395-408 https://doi.org/10.1016/S1359-6446(05)03379-9
  34. Mullin, J. M. Mullin, N. Agostino, E. Rendon-Huerta, and J. J. Thornton. 2005. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov. Today 10, 395-408 https://doi.org/10.1016/S1359-6446(05)03379-9
  35. Oka, H, H. Shiozaki, K Kobayashi, M. Inoue, H. Tahara, T. Kobayashi, Y. Takatsuka, N. Matsuyoshi, S. Mirano, M. Takeichi, and T. Mori. 1993. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 53, 1696-1701
  36. Sliva, D., R. Mason, H Xiao, and D. English. 2000. Enhancement of the migration of metastatic human breast cancer cells by phosphatidic acid. Biochem. Biophys. Res. Commun. 268, 471-479 https://doi.org/10.1006/bbrc.2000.2111
  37. Soler, A. P., R. D. Miller, K V. Laughlin, N. Z. Carp, D. M. Klurfeld, and J. M. Mullin. 1999. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20, 1425-1431 https://doi.org/10.1093/carcin/20.8.1425
  38. Swift, J. G., T. M. Mukherjee, and R. Rowland. 1983. Intercellular junctions in hepatocellular carcinoma. J. Submicrosc. Cytol. 15, 799-810
  39. Tokes, A. M., J. Kulka, S. Paku, A. Szik, C. Peska, P. K Novak, L. Szilak, A. Kiss, K Bogi, and Z. Schaff. 2005. Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res. 7, R296-305 https://doi.org/10.1186/bcr983
  40. Tsukamoto, T. and S. K Nigam. 1999. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am. J. Physiol. Renal. Physiol. 276, 737-750
  41. Van Hallie, C. M. and J. M. Anderson. 2004. The Molecular Physiology of tight junction pores. Physiol. 19, 331-338 https://doi.org/10.1152/physiol.00027.2004
  42. Yao, L., Y. L. Zhao, S. Hoh, S. Wada, L. Yue, and I. Furuta. 2000. Thrombospondin-1 expression in oral squamous cell carcinomas: correlations with tumor vascularity, clinicopathological features and survival. Oral Oncol. 36, 539-544 https://doi.org/10.1016/S1368-8375(00)00048-8
  43. Yokoyama, K, N. Kamata, E. Hayashi, T. Hoteiya, N. Ueda, R. Fujimoto, and M. Ngayama. 2001. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 37, 65-71 https://doi.org/10.1016/S1368-8375(00)00059-2

Cited by

  1. Anti-invasive activity of diallyl disulfide through tightening of tight junctions and inhibition of matrix metalloproteinase activities in LNCaP prostate cancer cells vol.24, pp.6, 2010, https://doi.org/10.1016/j.tiv.2010.06.014
  2. Inhibition of Matrix Metalloproteinase Activities and Tightening of Tight Junctions by Diallyl Disulfide in AGS Human Gastric Carcinoma Cells vol.76, pp.4, 2011, https://doi.org/10.1111/j.1750-3841.2011.02114.x