• Title/Summary/Keyword: Cascade voltage

Search Result 98, Processing Time 0.022 seconds

Design of Passive Parameters for A Cascade Multilevel Inverter Based Static Var Compensator (직렬형 멀티레벨 인버터를 사용한 무효전력보상장치의 수동 파라메타 설계)

  • Min, Wan-Ki;Min, Jun-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.125-130
    • /
    • 2002
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H~bridge inverter(HBI). The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. From the mathematical model of the system, the design procedures of the circuit parameters Land C are presented in this thesis. To meet the specific total harmonic distortion(THD) and ripple factor of the capacitor voltage, the circuit parameters Land C are designed. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

  • PDF

Optimization of Vent Logic for Cascade Type Fuel Cell Module (캐스캐이드형 연료전지 모듈 벤트 로직 최적화)

  • Lim, Jongkoo;Park, Jongcheol;Kwon, Kiwook;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Many type of fuel cell stacks have been developed to improve the efficiency of reactants usage. The cascade type fuel cell stack using dead end operation is able to attain above 99% usage of hydrogen and oxygen. It is sectionalized to several parts and the residual reactants which are used previous parts would be supplied again to next parts which have less number of cells in dead end operation stack. The oversupply of reactants which is usually 120%~150% of the theoretical amount to generate current for preventing the flooding effect could be provided to each part except the last one. The final section which is called monitoring cells is supposed to be supplied insufficient the fuel or oxidant that would have some accumulated inert gas from former parts. It makes some voltage drop in the part and the fresh reactants must be supplied to the part for recovering it by venting the residual gas. So the usage of fuel and oxidant is depend on the time and frequency of opening valves for venting of residual gas and it is important to optimize the vent logic for achieving higher usage of hydrogen and oxygen. In this research, many experiments are performed to find optimal condition by evaluating the effect of time and frequency under several power conditions using over 100kW class fuel cell module. And the characteristics of the monitoring cells are studied to know the proper cell voltage which decide the condition of opening the vent valve for stable performance of the cascade type fuel cell module.

  • PDF

Design of Advanced Static Var Compensator(ASVC) for Distribution Line (배전선로 적용을 위한 새로운 무효전력보상치(ASVC)의 설계)

  • Min, Wan-Ki;Lee, Sang-Hun;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2010-2012
    • /
    • 1997
  • A cascade multilevel voltage source inverter is introduced to apply the advanced static var compensator(ASVC) for large scale power application. This cascade M-level inverter consists of (M-1)/2 single-phase full bridges. This inverter is suitable to the flexible ac transmission systems(FACTS) including SVC, series compensation and phase shifting. It can solve the problems of conventional transformer -based multipulse inverters and multilevel diode-clamped inverters. From the simulation results, the validity of ASVC with cascade multilevel inverter is shown for high power application.

  • PDF

Novel Control of STATCOM Using Cascade Multilevel Inverter for High Power Application (대전력용 직렬형 멀티레벨 인버터 이용한 STATCOM의 새로운 제어기법)

  • Min, Wan-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.136-141
    • /
    • 2000
  • This paper proposes the novel control of a static synchronous compensator (STATCOM). This STATCOM system consists of cascade multilevel inverter which employs H-bridge inverter(HBI) The STATCOM system is modeled in the d-q transform matrix. This model is used to design a controller. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion (THD) low in the output voltage. The switching method produces the staircase type waveform in cascade multilevel inverter. To balance the DC voltages in HBIs capacitor, the rotated switching scheme is newly proposed in this paper. The proposed control scheme is verified in the simulated results.

  • PDF

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Structure and Control of Smart Transformer with Single-Phase Three-Level H-Bridge Cascade Converter for Railway Traction System (Three-Level H-Bridge 컨버터를 이용한 철도차량용 지능형 변압기의 구조 및 제어)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.617-628
    • /
    • 2016
  • This paper proposes the structure of a smart transformer to improve the performance of the 60Hz main power transformer for rolling stock. The proposed smart transformer is a kind of solid state transformer that consists of semiconductor switching devices and high frequency transformers. This smart transformer would have smaller size than the conventional 60Hz main transformer for rolling stock, making it possible to operate AC electrified track efficiently by power factor control. The proposed structure employs a cascade H-Bridge converter to interface with the high voltage AC single phase grid as the rectifier part. Each H-Bridge converter in the rectifier part is connected by a Dual-Active-Bridge (DAB) converter to generate an isolated low voltage DC output source of the system. Because the AC voltage in the train system is a kind of medium voltage, the number of the modules would be several tens. To control the entire smart transformer, the inner DC voltage of the modules, the AC input current, and the output DC voltage must be controlled instantaneously. In this paper, a control algorithm to operate the proposed structure is suggested and confirmed through computer simulation.

A New Inverter Topology for High Voltage and High Power Applications (고전압 대용량을 위한 새로운 인버터 토폴로지)

  • 김태훈;최세완;박기원;이왕하
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • In this paper, a new three-phase voltage-source inverter topology for high voltage and high Power applications is proposed to improve the quality of output voltage waveform. A chain converter which is used as an auxiliary circuit generates a ripple voltage and injects it to the conventional 12-step inverter. Thus, the injection of the ripple voltage results in 36-step operation with a link and 60-step operation with two links. The proposed inverter is compared to the conventional multilevel inverter in the viewpoint of ratings of phase- shifting transformers, switching devices and capacitors employed. The proposed scheme is simple to control capacitor voltages compared to the conventional schems and is cost effective for high voltage and high power application over several tens of MVA. The proposed approach is validated through simulation, and the experimental results are provided from a 2KVA laboratory prototype.

A Design of Novel 200 MHz CMOS Transconductors (새로운 200 MHz CMOS 선형 트랜스컨덕터의 설계)

  • 박희종;이주찬;신희종;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.361-364
    • /
    • 1999
  • A 200 MHz CMOS transconductor using translinear cells is presented. It adopts a cascade circuit consisting of a voltage follower(VF), a resistor, and a current follower(CF). The translinear cell which has substancely high-frequency is used as the VF and CF, respectively Simulation results show that the proposed transconductors have the 3-㏈ frequency of a 200 MHz, and the dynamic range of $\pm$2.5 V for a supply voltage $\pm$3 V.

  • PDF

Zero Voltage and Zero Current Switching Buck Converter Using a Single Swi (하나의 스위치를 사용한 영전압-전류 스위칭 벅 컨버터)

  • Kim, Ki-Jun;Lee, Tai-Woong;Lee, Sung-Paik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1866-1868
    • /
    • 1998
  • This paper propose zero voltage and zero current switching buck converter using a single switch. This converter is electrically equivalent to two basic buck converter in a cascade. Proposed converter is switching at high frequency and operate in high efficiency at wide load range due to resonant switching.

  • PDF

Characteristics of Latch-up Current of the Dual Gate Emitter Switched Thyristor (Dual Gate Emitter Switched Thyristor의 Latch-up 전류 특성)

  • 이응래;오정근;이형규;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.799-805
    • /
    • 2004
  • Two dimensional MEDICI simulator is used to study the characteristics of latch-up current of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics, latch-up current density, ON-voltage drop and electrical property with the variations of p-base impurity concentrations. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have the better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer p-base structure under the floating $N^+$ emitter indicates to have the better characteristics of latch-up current and breakover voltage.