• 제목/요약/키워드: Cascade structure

검색결과 144건 처리시간 0.025초

종속형 퍼지-뉴럴 네트워크를 이용한 풍력발전기 출력 예측 (Estimation of Wind Turbine Power Generation using Cascade Architectures of Fuzzy-Neural Networks)

  • 김성민;이동훈;장종인;원정철;강태호;임영근;한창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1098_1099
    • /
    • 2009
  • In this paper, we present the estimation of wind turbine power generation using Cascade Architectures of Fuzzy Neural Networks(CAFNN). The proposed model uses the wind speed average, the standard deviation and the past output power as input data. The CAFNN identification process uses a 10-min average wind speed with its standard deviation. The method for rule-based fuzzy modeling uses Gaussian membership function. It has three fuzzy variables with three modifiable parameters. The CAFNN's configuration has three Logic Processors(LP) that are constructed cascade architecture and an effective optimization method uses two-level genetic algorithm. First, The CAFNN is trained with one-day average input variables. Once the CAFNN has been trained, test data are used without any update. The main advantage of using CAFNN is having simple structure of system with many input variables. Therefore, The proposed CAFNN technique is useful to predict the wind turbine(WT) power effectively and hence that information will be helpful to decide the control strategy for the WT system operation and application.

  • PDF

후류의 영향을 고려한 터빈 캐스케이드내 열전달 현상에 대한 실험적 연구 (Experimental Study on the Heat Transfer under the Effects of Wake In a Turbine Cascade)

  • 민홍기;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.36-41
    • /
    • 2001
  • In order to simulate wake of stator and a gas turbine engine's balde row, acryl cylinder and a linear turbine cascade were used respectively in this study. Experimental of heat transfer distributions was done on the passage endwall and blade suction surface. Temperature distributions on the experimental regions were obtained through image processing system by using the cholesteric type liquid crystal which has chain structure of metyl$(CH_3)$. To represent the degree of heat transfer, dimensionless St number was used. The results show that heat transfer on the blade suction surface was increased due to the wake from the cylinder and was decreased as the distance between cylinder row and blade row increases. Because of groth of passage vortex, heat transfer distributions on the trailing edge area showed triangular shape which was little changed with wake. On the other hand, heat transfer on the passage endwall was decreased due to the wake from cylinder. As the distance between cylinder row and blade row increases, heat transfer was more decreased.

  • PDF

InGaAs/InAlAs Quantum Cascade Lasers Grown by using Metal-organic Vapor-phase Epitaxy

  • Kim, Dong Hak;Jeong, Hae Yong;Choi, Young Su;Park, Deoksoo;Jeon, Young-Jin;Jun, Dong-Hwan
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.139-142
    • /
    • 2017
  • In this paper, InP-based InGaAs/InAlAs quantum cascade lasers(QCLs) providing nearly zero emission wavelength mismatch between the measured emission wavelength and the designed transition wavelength of QCLs is presented. The zero emission wavelength mismatch of QCLs influenced by both the accurate compositions and thicknesses of the low-pressure metal-organic vapor-phase epitaxy(MOVPE) grown InGaAs and InAlAs layers throughout the core and the abrupt composition transitions between InGaAs and InAlAs layers. The abrupt interfaces between InGaAs and InAlAs layers have been achieved throughout the core structure by means of controlling individually purged vent/run valves of a closed coupled showerhead reactor. In addition, maintaining substrate temperature constant during InGaAs/InAlAs core growth was a partial factor of uniformity improvement of QCLs. These approaches for reducing the possible discrepancies between the designed and MOVPE grown epitaxial structures could lead to improvement of QCL performance.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

4비트 ADC 반복구조를 이용한 저전력 전류모드 12비트 ADC (A Low Power Current-Mode 12-bit ADC using 4-bit ADC in cascade structure)

  • 박소연;김형민;이대니얼주헌;김성권
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1145-1152
    • /
    • 2019
  • 본 논문에서는 디지털 회로와 저소비전력 및 고속연산의 장점을 가진 아날로그 회로를 혼용하기 위하여, 저전력 전류모드 12비트 ADC(: Analog to Digital Converter)를 제안하였다. 제안하는 12비트 ADC는 4비트 ADC의 cascade 구조를 사용하여 소비전력을 줄일 수 있었으며, 변환 current mirror 회로를 사용해 칩면적을 줄일 수 있었다. 제안된 ADC는 매그나칩/SK하이닉스 350nm 공정으로 구현하였고, Cadence MMSIM을 사용하여 post-layout simulation를 진행하였다. 전원전압 3.3V에서 동작하고, 면적은 318㎛ x 514㎛를 차지하였다. 또한 제안하는 ADC는 평균 소비전력 3.4mW의 저소비전력으로 동작하는 가능성을 나타내었다.

선형 PID 제어기 설계에 관한 연구 (A Study on the Design of Linear PID Controller)

  • 조준호
    • 산업융합연구
    • /
    • 제16권2호
    • /
    • pp.33-39
    • /
    • 2018
  • 본 논문은 선형 PID 제어기의 설계 방법에 대해서 설명하였고, 향후 설계 방법에 대해서 제안 하였다. 첫 번째 PID 설계 방법으로는 위상여유와 이득여유를 보장하는 방법이다. 이 방법은 주파수 영역에서 설계하는 것으로 안정도를 보장한다. 두 번째 방법은 내부 모델 제어 방법이다. 이 방법은 제어 모델에 대한 내부 모델을 동정 후 내부 모델의 파라미터를 이용하여 PID 제어기를 설계하는 것이다. 따라서 이 방법은 외란에 강한 특성을 갖고 있다. 마지막으로 제안하는 것은 Cascade-smith-Predictor 제어기 이다. 이방 법의 Cascade 제어기와 smith-Predictor의 구조를 결합한 것으로 강인제어와 최적제어 두 가지 장점을 갖는 제어기 구조이다. 이 방법은 최적 제어기 설계 방법으로 성능 평가지수를 얻을 수 있을 것이다. 이와 같은 PID 제어기 설계 방법은 비선형 방법의 기초가 되며, 지속적인 연구가 수행되고 있다.

비대칭 디지털 가입자회선을 위한 효율적인 반향 제거기 (An Effective Echo Canceller for Asymmetric Digital Subscriber Lines)

  • 권오상;조계옥;이기원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.55-58
    • /
    • 1999
  • For the asymmetric digital subscriber line communications, the paper proposes a new echo canceller with the so-called CALAOI(CAscade of LAttice and Orthogonalized IIR) structure, which comprises of a lattice and an orthogonalized IIR structure. Through simulations, the CALAOI echo canceller was verified to have much fewer complexity of computations and has faster convergence speed than conventional FIR echo canceller. The CALAOI echo canceller is predicted to maximize performances of communication services in high speed communications such as VDSL, GIGA bit Ethernet, and so on as well as ADSL.

  • PDF

Study of the Structure Change on Ion-Beam-Mixed CoPt Alloys.

  • Son, J.H.;Lee, Y.S.;Lim, K.Y.;Kim, T.G.;Chang, G.S.;Woo, J.J.;Whang, C.N.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.135-136
    • /
    • 1998
  • By the ion bombardment the original discrete layered structure is damaged and a uniformly mixed layer is formed by the intermixing of the films. Immediately after this dynamic cascade mixing a structure of this mixed layer is likely to be a mixture of randomly distributed atoms. Subsequently the mixed layered structure becomes a non-equilibrium structure such as the metastable pphase because the kinetic energies of the incident ions rappidly dissippate and host atoms within the collision cascade region are quenched from a highly energetic state. The formation of the metastable transition metal alloys using ion-beam-mixing has been extensively studied for many years because of their sppecific ppropperties that differ from those of bulk materials. in ion-beam-mixing the alloy or comppound is formed due to the atomic interaction between different sppecies during ion bombardment. in this study the metastable pphase formed by ion-beam-mixing pprocess is comppared with equilibrium one by arc-melting method by GXRD and XAS. Therfore we studied the fundamental characteristics of charge redistribution uppon alloying and formation of intermetallic comppounds. The multi-layer films were depposited on a wet-oxidized Si(100) substrate by sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr during depposition. These compprise 4 ppairs of Co and ppt layers where thicknesses of each layer were varied in order to change the alloy compposition.

  • PDF

스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석 (Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.