Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.5.139

InGaAs/InAlAs Quantum Cascade Lasers Grown by using Metal-organic Vapor-phase Epitaxy  

Kim, Dong Hak (Korea Advanced Nano Fab Center)
Jeong, Hae Yong (Korea Advanced Nano Fab Center)
Choi, Young Su (Korea Advanced Nano Fab Center)
Park, Deoksoo (Korea Advanced Nano Fab Center)
Jeon, Young-Jin (Korea Advanced Nano Fab Center)
Jun, Dong-Hwan (Korea Advanced Nano Fab Center)
Publication Information
Applied Science and Convergence Technology / v.26, no.5, 2017 , pp. 139-142 More about this Journal
Abstract
In this paper, InP-based InGaAs/InAlAs quantum cascade lasers(QCLs) providing nearly zero emission wavelength mismatch between the measured emission wavelength and the designed transition wavelength of QCLs is presented. The zero emission wavelength mismatch of QCLs influenced by both the accurate compositions and thicknesses of the low-pressure metal-organic vapor-phase epitaxy(MOVPE) grown InGaAs and InAlAs layers throughout the core and the abrupt composition transitions between InGaAs and InAlAs layers. The abrupt interfaces between InGaAs and InAlAs layers have been achieved throughout the core structure by means of controlling individually purged vent/run valves of a closed coupled showerhead reactor. In addition, maintaining substrate temperature constant during InGaAs/InAlAs core growth was a partial factor of uniformity improvement of QCLs. These approaches for reducing the possible discrepancies between the designed and MOVPE grown epitaxial structures could lead to improvement of QCL performance.
Keywords
Quantum cascade lasers; Infrared; III-V materials; MOVPE; MOCVD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).   DOI
2 A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, Appl. Phys. B 90 165 (2008).   DOI
3 S. Blaser, D. Hofstetter, M. Beck, and J. Faist, Electron Lett. 36 778 (2001).
4 A. Lyakh, C. Pflugl, L. Diehl, Q.J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, Appl. Phys. Lett. 92 111110 (2008).   DOI
5 Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi, Appl. Phys. Lett. 93 021103 (2008).   DOI
6 C. A. Wang, R.K. Huang, A. Goyal, J. P. Donnelly, D. R. Calawa, S. G. Cann, F. O'Donnell, J. J. Plant, L. J. Missaggia, G.W. Turner, and A. Sanchez-Rubio, J. Cryst. Growth 310 5191 (2008).   DOI
7 C. A. Wang, A. K. Goyal, S. Menzel, D. R. Calawa, M. Spencer, M.K. Connors, D. McNulty, A. Sanchez, G. W. Turner, and F. Capasso, J. Cryst. Growth 370 212 (2013).   DOI
8 P. Konstantinos, B. Gregoire, P. Gilles, L. Ludovic, M. Olivia, P. Giulia, V. Angela, C. Ariane, A. Maria, S. Carlo, and S. Isabelle, Semicond. Sci. Technol. 31 055017 (2016).   DOI
9 L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, Proc. SPIE 9730 973008 (2016).
10 A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, Appl. Phys. Lett. 93 141103 (2008).   DOI
11 Yu Yao, Anthony J. Hoffman, and Claire F. Gmachl, Nature Photonics 67 432 (2012).
12 C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, Nature (London) 415, 883 (2002).   DOI