• Title/Summary/Keyword: Cartesian closed

Search Result 41, Processing Time 0.029 seconds

SPECTRAL DUALITIES OF MV-ALGEBRAS

  • Choe, Tae-Ho;Kim, Eun-Sup;Park, Young-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1111-1120
    • /
    • 2005
  • Hong and Nel in [8] obtained a number of spectral dualities between a cartesian closed topological category X and a category of algebras of suitable type in X in accordance with the original formalism of Porst and Wischnewsky[12]. In this paper, there arises a dual adjointness S $\vdash$ C between the category X = Lim of limit spaces and that A of MV-algebras in X. We firstly show that the spectral duality: $S(A)^{op}{\simeq}C(X^{op})$ holds for the dualizing object K = I = [0,1] or K = 2 = {0, 1}. Secondly, we study a duality between the category of Tychonoff spaces and the category of semi-simple MV-algebras. Furthermore, it is shown that for any $X\;\in\;Lim\;(X\;{\neq}\;{\emptyset})\;C(X,\;I)$ is densely embedded into a cube $I^/H/$, where H is a set.

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

Intuitionistic H-Fuzzy Reflexive Relations (직관적 H-퍼지 반사관계)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.33-36
    • /
    • 2003
  • We introduce the subcategory IRel$\_$R/ (H) of IRel (H) consisting of intuitionistic H-fuzzy reflexive relational spaces on sets and we study structures of IRel$\_$R/ (H) in a viewpoint of the topological universe introduce by L.D.Nel. We show that IRel$\_$R/ (H) is a topological universe over Set. Moreover, we show that exponential objects in IRel$\_$R/ (H) are quite different from those in IRel (H) constructed in [7].

  • PDF

Some Subcategories of The Category IRe$l_{R}$(H) (범주 IRe $l_{R}$(H)의 부분범주)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.29-32
    • /
    • 2003
  • We introduce the subcategories IRe $l_{PR}$ (H), IRe $l_{PO}$ (H) and IRe $l_{E}$(H) of IRe $l_{R}$(H) and study their structures in a viewpoint of the topological universe introduced by L.D.Nel. In particular, the category IRe $l_{R}$(H)(resp. IRe $l_{P}$(H) and IRe $l_{E}$(H)) is a topological universe eve, Set. Moreover, we show that IRe $l_{E}$(H) has exponential objects.ial objects.

  • PDF

COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Owing to the notion of a normal adjacency for a digital product in [8], the study of product properties of digital topological properties has been substantially done. To explain a normal adjacency of a digital product more efficiently, the recent paper [22] proposed an S-compatible adjacency of a digital product. Using an S-compatible adjacency of a digital product, we also study product properties of digital topological properties, which improves the presentations of a normal adjacency of a digital product in [8]. Besides, the paper [16] studied the product property of two digital covering maps in terms of the $L_S$- and the $L_C$-property of a digital product which plays an important role in studying digital covering and digital homotopy theory. Further, by using HS- and HC-properties of digital products, the paper [18] studied multiplicative properties of a digital fundamental group. The present paper compares among several kinds of adjacency relations for digital products and proposes their own merits and further, deals with the problem: consider a Cartesian product of two simple closed $k_i$-curves with $l_i$ elements in $Z^{n_i}$, $i{\in}\{1,2\}$ denoted by $SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$. Since a normal adjacency for this product and the $L_C$-property are different from each other, the present paper address the problem: for the digital product does it have both a normal k-adjacency of $Z^{n_1+n_2}$ and another adjacency satisfying the $L_C$-property? This research plays an important role in studying product properties of digital topological properties.

A Relative Nodal Displacement Method for Element Nonlinear Analysis (상대 절점 변위를 이용한 비선형 유한 요소 해석법)

  • Kim Wan Goo;Bae Dae sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

A Relative for Finite Element Nonlinear Structural Analysis (상대절점좌표를 이용한 비선형 유한요소해석법)

  • Kang, Ki-Rang;Cho, Heui-Je;Bae, Dae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF

Closed-form Expressions of Magnetic Field and Magnetic Gradient Tensor due to a Circular Disk (원판형 이상체에 의한 자력 및 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • In case axial symmetrical bodies with varying cross sections such as volcanic conduits and unexploded ordnance (UXO), it is efficient to approximate them by adding the response of thin disks perpendicular to the axis of symmetry. To compute the vector magnetic and magnetic gradient tensor respones by such bodies, it is necessary to derive an analytical expression of the circular disk. Therefore, in this study, we drive closed-form expressions of the vector magnetic and magnetic gradient tensor due to a circular disk. First, the vector magnetic field is obtained from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor due to the same disk with a constant density can be transformed into a magnetic field. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic field with respect to the cylindrical coordinates converted from the Cartesian coordinate system. Finally, both the vector magnetic and magnetic gradient tensors are derived using Lipschitz-Hankel type integrals based on the axial symmetry of the circular disk.

Closed-form Expressions of Vector Magnetic and Magnetic Gradient Tensor due to a Line Segment (선형 이상체에 의한 벡터 자력 및 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • An elongated object in one direction can be approximated as a line segment. Here, the closed-form expressions of a line segment's vector magnetic and magnetic gradient tensor are required to interpret responses by a line segment. Therefore, the analytical expressions of the vector magnetic and magnetic gradient tensor are derived. The vector magnetic is converted from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor caused by a line segment can be transformed into a vector magnetic. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to each axis in the Cartesian coordinate system. The synthetic total magnetic data simulated by an iron pile on boreholes are inverted by a nonlinear inversion process so that the physical parameters of the iron pile, including the beginning point, the length, orientation, and magnetization vector are successfully estimated.