DOI QR코드

DOI QR Code

Closed-form Expressions of Vector Magnetic and Magnetic Gradient Tensor due to a Line Segment

선형 이상체에 의한 벡터 자력 및 자력 변화율 텐서 반응식

  • Rim, Hyoungrea (Department of Earth Science Education, Pusan National University)
  • 임형래 (부산대학교 지구과학교육과)
  • Received : 2022.04.06
  • Accepted : 2022.05.23
  • Published : 2022.05.31

Abstract

An elongated object in one direction can be approximated as a line segment. Here, the closed-form expressions of a line segment's vector magnetic and magnetic gradient tensor are required to interpret responses by a line segment. Therefore, the analytical expressions of the vector magnetic and magnetic gradient tensor are derived. The vector magnetic is converted from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor caused by a line segment can be transformed into a vector magnetic. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to each axis in the Cartesian coordinate system. The synthetic total magnetic data simulated by an iron pile on boreholes are inverted by a nonlinear inversion process so that the physical parameters of the iron pile, including the beginning point, the length, orientation, and magnetization vector are successfully estimated.

한쪽 방향으로 연장된 이상체를 멀리 떨어져서 관측하면 선형 이상체로 근사가 가능하다. 이런 경우 자력 및 자력 변화율 텐서를 적용하기 위해서는 선형 이상체에 대한 해석해가 필요하다. 따라서 이 논문에서는 선형 이상체에 대한 자력과 자력 변화율 텐서 반응식을 유도하였다. 벡터 자력은 기존에 유도한 선형 이상체에 대한 중력 변화율 텐서를 포아송 관계식을 이용하여 벡터 자력으로 변환하여 유도하였다. 자력 변화율 텐서는 벡터 자력를 기준 직교 좌표계의 성분으로 한번 더 미분하여 유도하였다. 시추공에서 얻은 총자력 탐사 자료를 가정하고, 선형 이상체의 길이, 방향, 자력 모멘트를 비선형 역산 방법으로 추정하는 사례를 보여주었다.

Keywords

Acknowledgement

논문에 대한 상세한 의견을 제시하여 완성도를 높여 주신 익명의 심사위원께 감사드립니다. 이 논문은 부산대학교 기본연구지원사업의 지원으로 수행되었습니다.

References

  1. Beiki, M., Clark, D. A, Austin, J. R., and Foss, C. A., 2012, Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data, Geophysics, 77(6), J23-J37, doi: 10.1190/geo2011-0437.1.
  2. Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press, doi: 10.1017/CBO9780511549816.
  3. Krahenbuhl, R., A., and Li, Y., 2017, Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect, Geophysics, 82(6), J83-J97, doi: 10.1190/geo2016-0676.1.
  4. Lee, H., Rim, H, Jung, H., Jung, H. K., and Yang, J., 2010, Detecting steel pile using bore-hole 3-components fluxgate magnetometer, Jour. Korean Earth Science Society, 31(7), 673-680. (in Korean with English abstract). doi: 10.5467/JKESS.2010.31.7.673.
  5. Li, C., Liu, D., Meng J., Liu, J., and Zhang, Y., 2020, The positioning of buried pipelines from magnetic data, Geophysics, 85(6), J111-J120, doi: 10.1190/geo2020-0157.1.
  6. Lowrie, W., and Fichtner, A. 2020, Fundamentals of Geophysics 3rd ed., Cambridge University Press, doi: 10.1017/9781108685917.
  7. Matende, K., and Mickus, K., 2021, Magnetic and gravity investigation of kimberlites in north-central Botswana, Geophysics, 86(2), B67-B78, doi: 10.1190/geo2020-0450.1.
  8. Nettleton, L. L., 1942, Gravity and magnetic calculations, Geophysics, 7(3), 293-310, doi: 10.1190/1.1445015.
  9. Ren, Z., Chen, H., Chen, C., Zhong, Y., and Tang, J., 2019, New analytical expression of the magnetic gradient tensor for homogeneous polyhedrons, Geophysics, 84(3), A31-A35, doi: 10.1190/geo2018-0741.1.
  10. Rim, H., 2022, Closed-form expressions of the vector gravity and gravity gradient tensor due to a line segment, Geophys. and Geophys. Explor., 25(1), 1-5, doi: 10.7582/GGE.2022.25.1.44. (in Korean with English abstract)
  11. Sheriff, R. E., 2002, Encyclopedic Dictionary of Applied Geophysics, Society of Exploration Geophysicists, doi: 10.1190/1.9781560802969.
  12. Telford, W., Geldart, L., and Sheriff, R., 1990, Applied Geophysics 2nd ed., Cambridge University Press. doi: 10.1017/CBO9781139167932.
  13. Xie, R., Xiong, S., Duan, S., Wang, J., Wang, P., Yao Luo, Y., Liu, H., and Fan, Z., 2021, Using airborne vector magnetic data to calculate the projection of the magnetic anomaly vector onto a normal geomagnetic field, Geophysics, 86(6), J59-J67, doi: 10.1190/geo2020-0582.1.
  14. Zwillinger, D., Moll, V., Gradshteyn, I. S., and Ryzhik, I. M., 2014, Table of Integrals, Series, and Products 8th ed., Academic Press, doi: 10.1016/B978-0-12-384933-5.00002-3.