• Title/Summary/Keyword: Carbon-based catalysts

Search Result 115, Processing Time 0.025 seconds

Study on Ni-based Bead Catalyst for Catalytic Thermal Decomposition of Light Hydrocarbons (경질 탄화수소 촉매 열분해를 위한 Ni 기반 구슬 촉매에 대한 연구)

  • JINHYEOK WOO;JUEON KIM;TAEYOUNG KIM;SOOCHOOL LEE;JAECHANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • In this study, we researched Ni-based bead catalysts for the catalytic thermal decomposition of light hydrocarbons. A Ni-based bead-type catalyst was prepared, and catalytic thermal decomposition performance of light hydrocarbons was evaluated. The 30Ni/Al2O3 catalyst exhibited the most superior performance, with the presence of both fibrous and carbon black forms on the catalyst surface. Catalytic performance was evaluated for particles sized between 150-250 and 500 ㎛, with excellent catalytic thermal decomposition properties in the 150-250 ㎛ range. After the reaction, carbon removal through collision between catalysts in the fluidized bed was observed. It was confirmed that as the particle size increases, the amount of carbon removed increases.

Development of High Performance WGS Catalyst for Fuel Processor Applications (연료 개질기용 고성능 수성가스 전환반응 촉매 개발)

  • Lee, Yoon-Ju;Ryu, Jong-Woo;Kim, Dae-Hyun;Choi, Eun-Hyung;Noh, Won-Suck;Lee, Sang-Deuk;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

Research Trends of Ni-based Catalysts on Steam Reforming of Bio-oils for H2 Production: A Review (수소 생산을 위한 바이오오일 수증기 개질 반응에서의 니켈계 촉매 연구동향)

  • Da Hae Lee;Hyeon Myeong Seo;Yun Ha Song;Jaekyoung Lee
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.163-171
    • /
    • 2023
  • Hydrogen has been gaining a lot of attention as a possible clean energy source that can aid in reaching carbon neutrality. Currently, hydrogen production has relied on the steam reforming of fossil fuels. However, due to the carbon dioxide emissions caused by this process, hydrogen production based on the steam reforming of bio-oil derived from biomass has been proposed as an alternative approach. In order to use this alternative approach efficiently, one of the key issues that must be overcome is that the complexity of bio-oil, which has a large molecular weight and diverse functional groups of hydrocarbons, promotes the catalytic deactivation of nickel-based catalysts. In this review, research efforts to improve nickel-based catalysts for the steam reforming of bio-oil have been discussed in terms of the active phase, support, and promoters. The active phases are involved in activating C-C and C-H bonds of high-molecular-weight hydrocarbons, and noble and transition metals can be utilized. In terms of the support and promoters, the catalytic deactivation of Ni-based catalysts can be inhibited by utilizing reactive lattice oxygen for support or by suppressing the acidity. The development of active and stable Ni-based reforming catalysts plays a critical role in clean hydrogen production based on bio-oils.

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties (카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성)

  • Cho, Hong-Baek;Suh, Min-Ho;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • Carbon nanotube supported molybdenum carbide catalysts were prepared as a function of various preparation conditions and characterized, and their catalytic activities were compared through electrochemical oxidation of methanol. To overcome the low activity of a transition metal catalyst, carbon nanotube was used as a support, and the amount and the kind of precursors, acid treatment method, and carburization temperature were varied for the catalyst preparation. ICP-AES, XRD and TEM were used for the catalyst characterization. Based on the various preparation methods of carbon nanotube supported molybdenum carbide catalysts ($Mo_2C/CNT$), the size and the amount of supported catalysts could be controlled, and their effects on the electrochemical oxidation could be explained.

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction (산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조)

  • Lee, Young-geun;An, Geon-hyeong;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Microwave Absorption Study of Carbon Nano Materials Synthesized from Natural Oils

  • Kshirsagar, Dattatray E.;Puri, Vijaya;Sharon, Maheshwar;Sharon, Madhuri
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.245-248
    • /
    • 2006
  • Thin films of carbon-nano materials (CNMs) of different morphology have been successfully deposited on ceramic substrate by CVD at temperatures $800^{\circ}C$, $850^{\circ}C$ and $900^{\circ}C$ using plant based oils in the presence of transition metal catalysts (Ni, Co and Ni/Co alloys). Based on the return and insertion loss, microwave absorption properties of thin film of nanocarbon material are measured using passive micro-Strip line components. The result indicates that amongst CNMs synthesized from oil of natural precursors (mustered oil - Brassica napus, Karanja oil - Pongamia glabra, Cotton oil - Gossipium hirsuta and Neem oil - Azadirachta indica) carbon nano fibers obtained from neem's seed oil showed better microwave absorption (~20dB) in the range of 8.0 GHz to 17.90 GHz.

  • PDF

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.