Browse > Article
http://dx.doi.org/10.18770/KEPCO.2016.02.03.447

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol  

Riaz, Asim (School of Mechanical Eng., Sungkyunkwan Univ.)
Kim, Jaehoon (School of Mechanical Eng., Sungkyunkwan Univ.)
Publication Information
KEPCO Journal on Electric Power and Energy / v.2, no.3, 2016 , pp. 447-452 More about this Journal
Abstract
It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.
Keywords
Concentrated sulfuric acid hydrolysis lignin; supercritical ethanol; hydrodeoxygenation; energy efficiency; energy recovery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE, Lignin valorization: improving lignin processing in the biorefinery. Science 2014;344:1246843.   DOI
2 Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM, The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 2010;110:3552-3599.   DOI
3 Kang SM, Li XL, Fan J, Chang J, Hydrothermal conversion of lignin: A review. Renew Sust Energy Rev 2013;27:546-558.   DOI
4 Laurichesse S, Averous L, Chemical modification of lignins: Towards biobased polymers. Prog Polym Sci 2014;39:1266-1290.   DOI
5 Pandey MP, Kim CS, Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chem Eng Technol 2011;34:29-41.   DOI
6 Vishtal A, Kraslawski A, Challenges in industrial application of technical lignin. BioResources 2011;6:3547-3568.
7 Dorrestijin E, Laarhoven LJJ, Arends IWCE, Mulder P, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrolysis 2000;54:153-192.   DOI
8 Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P, Lignin fast pyrolysis: Results from an international collaboration. J Anal Appl Pyrolysis 2010;88:53-72.   DOI
9 Shen DK, Gu S, Luo KH, Wang SR, Fang MX, The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour Technol 2010;101:6136-6146.   DOI
10 Choi HS, Meier D, Fast pyrolysis of Kraft lignin-Vapor cracking over various fixed-bed catalysts. J Anal Appl Pyrolysis 2013;100:207-212.   DOI
11 Mukkamala S, Wheeler MC, van Heiningen ARP, DeSisto WJ, Formate-Assisted Fast Pyrolysis of Lignin. Energy Fuels 2012;26:1380-1384.   DOI
12 Zhang M, Resende FLP, Moutsoglou A, Catalytic fast pyrolysis of aspen lignin via Py-GC/MS. Fuel 2014;116:358-369.   DOI
13 Nguyen TDH, Maschietti M, Belkheiri T, Amand LE, Theliander H, Vamling L, Olausson L, Andersson SI, Catalytic depolymerisation and conversion of Kraft lignin into liquid products using near-critical water. J Supercrit Fluids 2014;86:67- 75.   DOI
14 Long JX, Xu Y, Wang TJ, Yuan ZQ, Shu RY, Zhang Q, Ma L, Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Applied Energy 2015;141:70-79.   DOI
15 Beauchet R, Monteil-Rivera F, Lavoie JM, Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour Technol 2012;121:328-334.   DOI
16 Erdocia X, Prado R, Corcuera MA, Labidi J, Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature. Biomass & Bioenergy 2014;66:379-386.   DOI
17 Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA, Towards quantitative catalytic lignin depolymerization. Chemistry 2011;17:5939-5948.   DOI
18 Patil PT, Armbruster U, Richter M, Martin A, Heterogeneously Catalyzed Hydroprocessing of Organosolv Lignin in Sub-and Supercritical Solvents. Energy Fuels 2011;25:4713-4722.   DOI
19 W. W. Zmierczak JDM, US007964761B2. 2011.
20 Jongerius AL, Bruijnincx PCA, Weckhuysen BM, Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem 2013;15:3049-3056.   DOI
21 Xu W, Miller SJ, Agrawal PK, Jones CW, Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 2012;5:667-675.   DOI
22 Huang X, Koranyi TI, Boot MD, Hensen EJ, Catalytic depolymerization of lignin in supercritical ethanol. ChemSusChem 2014;7:2276-2288.   DOI
23 Ma R, Hao W, Ma X, Tian Y, Li Y, Catalytic ethanolysis of Kraft lignin into high-value small-molecular chemicals over a nanostructured alpha-molybdenum carbide catalyst. Angew Chem Int Ed Engl 2014;53:7310-7315.   DOI
24 Tang Z, Zhang Y, Guo QX, Catalytic Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol. Ind Eng Chem Res 2010;49:2040-2046.   DOI
25 Yong TLK, Matsumura Y, Reaction Kinetics of the Lignin Conversion in Supercritical Water. Ind Eng Chem Res 2012;51:11975-11988.   DOI
26 Barta K, Matson TD, Fettig ML, Scott SL, Iretskii AV, Ford PC, Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem 2010;12:1640-1647.   DOI
27 Huang S, Mahmood N, Tymchyshyn M, Yuan Z, Xu CC, Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresour Technol 2014;171:95-102.   DOI
28 Kleinert M, Barth T, Towards a lignincellulosic biorefinery: Direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 2008;22:1371-1379.   DOI
29 Gosselink RJ, Teunissen W, van Dam JE, de Jong E, Gellerstedt G, Scott EL, Sanders JP, Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour Technol 2012;106:173-177.   DOI
30 Ye YY, Zhang Y, Fan J, Chang J, Novel Method for Production of Phenolics by Combining Lignin Extraction with Lignin Depolymerization in Aqueous Ethanol. Ind Eng Chem Res 2012;51:103-110.   DOI
31 Kim JY, Oh S, Hwang H, Cho TS, Choi IG, Choi JW, Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere 2013;93:1755-1764.   DOI
32 Cheng S, Wilks C, Yuan Z, Leitch M, Xu C, Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent. Polym Degrad Stab 2012;97:839-848.   DOI
33 Ehara K, Saka S, Kawamoto H, Characterization of the ligninderived products from wood as treated in supercritical water. J Wood Sci 2002;48:320-325.   DOI
34 Yuan Z, Cheng S, Leitch M, Xu CC, Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresour Technol 2010;101:9308-9313.   DOI
35 Yokoyama S-y, Suzuki A, Murakami M, Ogi T, Koguchi K, Nakamura E, Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate. Fuel 1987;66:1150-1155.   DOI
36 Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS, Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc 2013;135:6415-6418.   DOI
37 Ma R, Xu Y, Zhang X, Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 2015;8:24-51.   DOI
38 Kleinert M, Gasson JR, Barth T, Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. J Anal Appl Pyrolysis 2009;85:108-117.   DOI
39 Matsushita Y, Yasuda S, Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol 2005;96:465-470.   DOI
40 Goran G, Per T, Peter A, Birgit B, Lignin recovery and lignin-based products. in: Christopher LP. Integrated forest biorefineries challenges and opportunities. Thomas Graham House, United Kingdom: The Royal Society Of Chemistry; 2013, pp. 180-210.
41 Hasegawa I, Fujji Y, Yammada K, Kariya C, Takayama T, Ligninsilica hybrids as precursors for silicon carbide. J Appl Polym Sci 1999;73:1321-1328.   DOI