Browse > Article

Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties  

Cho, Hong-Baek (Extreme-Density Energy Research Institute, Nagaoka University of Technology)
Suh, Min-Ho (Division of Materials and Chemical Engineering, Hanyang University)
Park, Yeung-Ho (Division of Materials and Chemical Engineering, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.20, no.1, 2009 , pp. 28-33 More about this Journal
Abstract
Carbon nanotube supported molybdenum carbide catalysts were prepared as a function of various preparation conditions and characterized, and their catalytic activities were compared through electrochemical oxidation of methanol. To overcome the low activity of a transition metal catalyst, carbon nanotube was used as a support, and the amount and the kind of precursors, acid treatment method, and carburization temperature were varied for the catalyst preparation. ICP-AES, XRD and TEM were used for the catalyst characterization. Based on the various preparation methods of carbon nanotube supported molybdenum carbide catalysts ($Mo_2C/CNT$), the size and the amount of supported catalysts could be controlled, and their effects on the electrochemical oxidation could be explained.
Keywords
molybdenum carbide; carbon nanotube; catalyst preparation; electrochemical oxidation; acid treatment;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J.-H. Choi, K.-W. Park, B.-K. Kwon, and Y. E. Sung, J. Electrochem. Soc., 150, 973 (2003)   DOI   ScienceOn
2 V. Heine, Phys. Rev., 153, 673 (1967)   DOI
3 박혜림, 성균관대학교 석사학위논문 (2003)
4 C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. Terry, J. Phys. Chem. B., 105, 1115 (2001)   DOI   ScienceOn
5 J. G. Choi, J. R. Brenner, and L. T. Thompson, J. Catal., 154, 33 (1995)   DOI   ScienceOn
6 T. Matsumoto, Y. Nagashima, and T. Yamazaki, J. Electrochem. Solid-State Lett., 9, A160 (2006)   DOI   ScienceOn
7 C.-H. Li, K.-F. Yao, and J. Liang, Carbon, 41, 858 (2003)   DOI   ScienceOn
8 F. Rodriguez-Ranoso, Carbon, 36, 159 (1998)   DOI   ScienceOn
9 J. H. Sinfelt and D. J. C. Yates, Nature Phys. Sci., 229, 27 (1971)
10 A. Boyano, M. E. Galvez, R. Moliner, and M. J. Lazaro, Fuel, 87, 2058 (2008)   DOI   ScienceOn
11 K. S. Suslick, T. H. Hyeon, M. Fang, and A. A. Cichowlas, Mater. Sci. Eng., A204, 186 (1995)
12 C. Amorim and M. A Keane, J. Chem. Technol. Biotechnol., 83, 662 (2008)   DOI   ScienceOn
13 H. Abe and A. T. Bell, J. Catal., 142, 430 (1993)   DOI   ScienceOn
14 R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, H. S. O. Chan, G. Q. Xu, and T. S. A. Hor, Chem. Matter., 10, 718 (1998)   DOI   ScienceOn
15 G. Dj$\acute{e}$ga-Mariadassou, M. Boudart, G. Bugli, and C. Sayag, Catal. Lett., 31, 411 (1995)   DOI   ScienceOn
16 D.-J. Suh, T.-J. Park, and S.-K. Ihm, J. Catal., 149, 486 (1994)   DOI   ScienceOn
17 D.-J. Suh and T.-J. Park, Ind. Eng. Chem. Res., 31, 1849 (1992)   DOI
18 T. Kudo, G. Kawamura, and H. Okamoto, J. Electrochem. Soc., 130, 1491 (1983)   DOI   ScienceOn