Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.3.182

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction  

Lee, Young-geun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
An, Geon-hyeong (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.3, 2018 , pp. 182-188 More about this Journal
Abstract
Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.
Keywords
protein based carbon; oxygen reduction reaction; nitrogen doping;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J. K. Norskov, Nat. Chem., 1, 552 (2009).   DOI
2 M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. Zhang, L. Gu, B. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard III, Y. Huang and X. Duan, Science, 354, 1414 (2016).   DOI
3 G. H. An, E. H. Lee and H. J. Ahn, J. Alloy. Compd., 682, 746 (2016).   DOI
4 S. Y. Yoo, S. M. Kang, J. N. Lee, C. K. Rhee and H. J. Ryu, J. Mater. Res., 21, 180 (2011).
5 D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J. Nakamura, Science, 351, 361 (2016).   DOI
6 S. Yang, Z. Wang, Z. Cao, X. Mao, M. Shi, Y. Li, R. Zhang and Y. Yin, J. Alloy. Compd., 721, 482 (2017).   DOI
7 G. H. An, E. H. Lee and H. J. Ahn, J. Korean Powder Metall. Inst., 22, 350 (2015).   DOI
8 S. Sharma and B. G. Pollet, J. Power Sources, 208, 96 (2012).   DOI
9 J. Chang, L. Feng, C. Liu, W. Xing and X. Hu, Energy Environ. Sci., 7, 1628 (2014).   DOI
10 D. Y. Sin, G. H. An and H. J. Ahn, J. Mater. Res., 25, 113 (2015).
11 H. L. An, G. H. Ahn and H. J. Ahn, J. Mater. Res., 26, 250 (2016).
12 D. H. Oh, B. R. Koo, Y. J. Lee, H. L. An and H. J. Ahn, J. Mater. Res., 26, 649 (2016).
13 Y. J. Lee, G. H. An and H. J. Ahn, J. Mater. Res., 24, 37 (2014).
14 G. H. An and H. J. Ahn, J. Korean Powder Metall. Inst., 24, 96 (2017).
15 D. Y. Sin, G. H. An and H. J. Ahn, J. Nanosci. Nanotechno., 16, 10535 (2016).   DOI
16 H. L. An, G. H. An and H. J. Ahn, J. Alloy. Compd., 645, 317 (2015).   DOI
17 G. S. Hwang and R. Y. Lee, J. Mater. Res., 21, 138 (2011).
18 G. H. An, D. Y. Lee and H. J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017).   DOI
19 Y. G. Lee, G. H. An and H. J. Ahn, Korean J. Mater. Res., 27, 192 (2017).
20 G. H. An, B. R. Koo and H. J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016).   DOI
21 D. Y. Sin, I. K. Park and H. J. Ahn, RSC Adv., 6, 58823 (2016).   DOI
22 D. Y. Sin, G. H. An and H. J. Ahn, J. Korean Powder Metall. Inst., 22, 350 (2015).
23 H. L. An and H. J. Ahn, J. Electroanal. Chem., 744, 32 (2016).
24 T. Zhou, H. Wang, S. Ji, V. Linkov and R. Wang, J. Power Sources, 248, 427 (2014).   DOI
25 G. H. An, D. Y. Lee and H. J. Ahn, J. Alloy. Compd., 722, 60 (2017).   DOI
26 D. Y. Lee, G. H. An, H. J. Ahn, J. Ind. Eng. Chem., 52, 121 (2017).   DOI
27 L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. N. Waterhouse, L. Wu, C. Tung and T. Zhng, Adv. Mater., 28, 1668 (2016).
28 Y. J. Lee, G. H. An and H. J. Ahn, J. Nanosci. Nanotechno., 15, 1 (2015).   DOI
29 G. H. An, E. H. Lee and H. J. Ahn, Phys. Chem. Chem. Phys., 18, 14859 (2016).
30 D. Y. Sin, G. H. An and H. J. Ahn, J. Nanosci. Nanotechno., 17, 8180 (2017).   DOI
31 G. H. An, D. Y. Lee, Y. J. Lee and H. J. Ahn, ACS Appl. Mater. Interfaces, 8, 30264 (2016).   DOI
32 G. H. An, D. Y. Lee and H. Y. Ahn, ACS Appl. Mater. Interfaces, 8, 19466 (2016).   DOI
33 G. H. An, T. K. Lee and H. J. Ahn, J. Korean Powder Metall. Inst., 22, 367 (2015).
34 G. H. An and H. J. Ahn, J. Alloy. Compd., 710, 274 (2017).   DOI
35 L. Lai, J. R. Potts, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin and S. Ruoff, Energy Environ. Sci., 5, 7936 (2012).   DOI
36 H. L. An, G. H. Ahn and H. J. Ahn, J. Ceram. Process Res., 16, 208 (2015).
37 S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang and Z. Hu, Adv. Mater., 24, 5593 (2012).