• Title/Summary/Keyword: Carbon reduction program

Search Result 94, Processing Time 0.027 seconds

Estimation of Carbon Footprint in Cherry-tomato Production System and Carbon Labelling in Agriculture Product (시설방울토마토의 생산과정에 있어 탄소배출량 산정과 농산물의 탄소라벨링)

  • Kim, Young-Ran;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.291-308
    • /
    • 2011
  • This study was carried out to estimate carbon footprint and to establish of LCA of cherry-tomato production system. I have case study in cultivate cherry tomato (1 kg) calculate in carbon foot print. LCA carried out to estimate carbon foot print and to establish of LCI (life cycle inventory) database of cherry tomato production system. The data is from Research of Farmer's income in 2007 (RDA, 2008), and used Pass (4.1.3) program. The value of fertilizer, amount of pesticide input were show the environmental effect and direct emission. Carbon foot printing in agriculture guarantee the choice right th consumer th choose the row carbon goods. Its can make to strengthen of agriculture and food industry's reduction effort of $CO_2$. Nowadays consumer request food's safety and environment friendly process. Carbon foot printing needs consumer's relief and incentives.

Study of Garlic's Carbon Footprint though LCA (전과정평가를 통한 마늘의 탄소배출량 산정연구)

  • Yoon, Sung-Yee;Kim, Young-Ran;Kim, Tae-Ho;Park, Jin-Hyun;Ahn, Sung-Woo
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2012
  • This study was carried out to estimate carbon footprint and to establish of LCA of garlic production system. We have case study in cultivate garlic 1 kg calculate in carbon footprint. LCA carried out to estimate carbon footprint and to establish of LCI (life cycle inventory) database of garlic production system. The data is from Research of Farmer's income in 2010 (RDA, 2011), and used Pass (5.0.0) program. The value of fertilizer, amount of pesticide input were shown the environmental effect and direct emission. Carbon footprint in agriculture guarantees the choice right the consumer to choose the lower carbon goods. Its can make to strengthen of agriculture and food industry's reduction effort of $CO_2$. Nowadays consumer requests food's safety and environment friendly process. Carbon footprint also needs consumer's relief and incentives.

Polyol Synthesis of Ruthenium Selenide Catalysts for Oxygen Reduction Reaction

  • Lee, Ki-Rak;Woo, Seong-Ihl
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3145-3150
    • /
    • 2010
  • Ruthenium catalysts modified by selenium have been introduced as alternative materials to Pt in Direct methanol fuel cells (DMFCs). RuSe nano-particles were synthesized on the Vulcan XC72R carbon supports via polyol method. The prepared catalysts were electrochemically and physically characterized by cyclic voltammetry (CV,) linear sweep voltammetry, methanol tolerance test, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energydispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Increasing the Se concentration up to 20 at % increased the electro-catalytic activity for the oxygen reduction. By increasing Se amount, Ru metallic form on the surface was increased. The $Ru_{80}Se_{20}$/C catalysts showed the highest oxygen reduction reaction (ORR) activity and outstanding methanol tolerant property in half cell tests as well as single cell test.

Strategies for International Aviation to Respond to Climate Change (국제민간항공분야의 기후변화 대응 전략 연구)

  • Yoo, Kwang Eui
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.313-318
    • /
    • 2018
  • The growth rate of international aviation is expected to be higher than that of most industries and the proportion of carbon emissions from the aviation industry will become very significant as the year 2050 approaches. Constraining the growth of this industry is not desirable because it is essential for human welfare as well as the development of related industries. However, reduction of carbon due to aviation is not easy because it is difficult to improve fuel efficiency in a significant way. The ICAO (International Civil Aviation Organization), which is the main organization responsible for handling this problem, developed a program named CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation). The present study analyzes various strategies for countries and airlines to comply with CORSIA using a fuel-efficient system. We conclude that countries should improve their airspace utilization systems, airport facilities, and air navigation systems. Additionally, based on the results of a flight data analysis, airlines should improve their operational efficiency in terms of operations control, flight operation, and maintenance management.

Study on Geostatistical Method for an Effectiveness Analysis on Carbon Reduction Policy - Focusing on the Carbon Point System (탄소저감정책 효과분석을 위한 공간통계기법 적용방안 연구 - 탄소포인트제도를 대상으로 -)

  • Hwang, Hae-Seong;Joo, Yong-Jin;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Carbon Point system is Climate Change Action Program by providing incentives in proportion to voluntary reduction of energy consumption such as electricity, gas and water for houses, commercial facilities. So far, existing researches have been limited to construction of GHG(Green House Gas) Inventory and have little attention to empirical impact analysis on carbon reduction policy regarding the residential section. Therefore, this paper is intended to provide convincing findings of impact analysis on carbon reduction, revolving around the carbon point system. For this, we firstly calculated the carbon emission by using electricity and gas usage data in household targeting to Seongbuk-Gu. Carrying out IPA and spatio-temporal analysis. Then, we are capable of visualizing spatial patterns from 2007 to 2009 as a macro analysis. Following that, we explored the effect on carbon point system through Ex ante-Ex post Analysis by paired t-test. To conclude, we can spatially identify the distribution with a significant difference between carbon emissions according to energy use as a micro analysis by Hot Spot to Analysis on point entities. It is to be hoped that this method will be utilized to establish various policies and to evaluate the effect of reduction of GHG.

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.

The effect of Temperature Reduction of Green roof for building energy-saving using Rainwater Storage Tank (건물 에너지 절약을 위한 저류 옥상 녹화의 온도 저감 효과)

  • Yun, Seok-hwan;Kim, Eun-sub;Piao, Zheng-gang;Kim, Sang-hyuck;Kim, Na-yeon;Hwang, Hye-mee;Je, Sang-woo;Kang, Han-min;Ham, Eun-kyung;Lee, Dong-kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.51-59
    • /
    • 2023
  • Despite countries' efforts to reduce carbon emissions, carbon emissions have increased in recent decades along with energy use, of which building energy uses account for a large proportion. Energy savings are essential as a strategy to reduce carbon emissions in existing buildings. The field experiment on the roof of a building located in Seoul was designed to measure the temperature reduction effect of green roof with rainwater storage tank to reduce cooling energy consumption in summer. The results showed that the mean mean surface temperature under the green roof was 14.77 degrees lower than that of the non-green roof from 13:00 P.M. to 15:00 P.M., which would have a great effect on reducing cooling energy. From 01:00 A.M. to 03:00 A.M., the effect was 3.36 degrees, showing that tropical nights could be improved. The temperature reduction effect due to the rainwater storage system increased by 1.45 degrees during the day and decreased by 0.63 degrees at night. The storage system can be strategically utilized to reduce carbon emissions during the week when cooling energy increases significantly.

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Kang, Yun Sik;Chung, Dong Young;Chung, Young-Hoon;Ahn, Minjeh;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1195-1198
    • /
    • 2013
  • Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.

Immobilization of Horseradish Peroxidase to Electrochemically Deposited Gold-Nanoparticles on Glassy Carbon Electrode for Determination of H2O2

  • Ryoo, Hyun-woo;Kim, You-sung;Lee, Jung-hyun;Shin, Woon-sup;Myung, No-seung;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.672-678
    • /
    • 2006
  • A new approach to fabricate an enzyme electrode was described based on the immobilization of horseradish peroxidase (HRP) on dithiobis-N-succinimidyl propionate (DTSP) self-assembled monolayer (SAM) formed on gold-nanoparticles (Au-NPs) which were electrochemically deposited onto glassy carbon electrode (GCE) surface. The overall surface area and average size of Au-NPs could be controlled by varying deposition time and were examined by Field Emission-Scanning Electron Microscope (FE-SEM). The $O_2$ reduction capability of the surface demonstrated that Au-NPs were thermodynamically stable enough to stay on GCE surface. The immobilized HRP electrode based on Au-NPs/GCE presented faster, more stable and sensitive amperometric response in the reduction of hydrogen peroxide than a HRP immobilized on DTSP/gold plate electrode not containing Au-NPs. The effects of operating potential, mediator concentration, and pH of buffer electrolyte solution on the performance of the HRP biosensor were investigated. In the optimized experimental conditions, the HRP immobilized GCE incorporating smaller-sized Au-NPs showed higher electrocatalytic activity due to the high surface area to volume ratio of Au-NPs in the biosensor. The HRP electrode showed a linear response to $H_2O_2$ in the concentration range of 1.4 $\mu$M-3.1 mM. The apparent Michaelis-Menten constant ($K _M\; ^{app}$) determined for the immobilized HRP electrodes showed a trend to be decreased by decreasing size of Au-NPs electrodeposited onto GCE.