Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.4.1195

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application  

Choi, Kwang-Hyun (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Shokouhimehr, Mohammadreza (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Kang, Yun Sik (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Chung, Dong Young (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Chung, Young-Hoon (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Ahn, Minjeh (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Sung, Yung-Eun (School of Chemical and Biological Engineering, World Class University Program of Chemical Convergence for Energy and Environment, Seoul National University)
Publication Information
Abstract
Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.
Keywords
Direct methanol fuel cell; Oxygen reduction reaction; Palladium; Prussian blue; Hexacyanoferrate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Serov, A. A.; Kwak, C. Catal. Commun. 2009, 10, 1551.   DOI   ScienceOn
2 Stolten, D.; Emonts, B. Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH: 2012.
3 Wang, M.-X.; Xu, F.; Sun, H.-F.; Liu, Q.; Artyushkova, K.; Stach, E. A. Electrochim. Acta 2011, 56, 2566.   DOI   ScienceOn
4 Wang, C.; Luo, L.; Wu, Y.; Hou, B.; Sun, L. Mater. Lett. 2011, 65, 2251.   DOI   ScienceOn
5 Jung, N.; Cho, Y.-H.; Choi, K.-H.; Lim, J. W.; Cho, Y.-H.; Ahn, M. Electrochem. Commun. 2010, 12, 754.   DOI   ScienceOn
6 Wang, Y.-J.; Wilkinson, D. P.; Zhang, J. Chem. Rev. 2011, 111, 7625.   DOI   ScienceOn
7 Wiechowski, A.; Koper, M. Fuel Cell Catalysis: A Surface Science Approach, Wiley: 2009.
8 Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.   DOI   ScienceOn
9 Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.   DOI   ScienceOn
10 Yang, L.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H. Angew. Chem. Int. Ed. 2010, 49, 5348.   DOI   ScienceOn
11 Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. Inorg. Chem. 1977, 16, 2704.   DOI
12 Gispert, J. R. Coordination Chemistry, Wiley-VCH: 2008.
13 Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688.   DOI   ScienceOn
14 Gao, S.; Zhao, N.; Shu, M.; Che, S. Appl. Catal. A. 2010, 388, 196.   DOI   ScienceOn
15 Uemura, T.; Kitagawa, S. J. Am. Chem. Soc. 2003, 125, 7814.   DOI   ScienceOn
16 MacGillivray, L. R. Metal-Organic Frameworks: Design and Application, Wiley: 2010.
17 Larionova, J.; Guari, Y.; Sangregorio, C.; Guerin, C. New. J. Chem. 2009, 33, 1177.   DOI   ScienceOn
18 Jeon, T.-Y.; Yoo, S. J.; Park, H.-Y.; Kim, S.-K.; Lim, S.; Peck, D. Langmuir 2012, 28, 3664.   DOI   ScienceOn
19 Zhou, W.-P.; Sasaki, K.; Su, D.; Zhu, Y.; Wang, J. X.; Adzic, R. R. J. Phys. Chem. C 2010, 114, 8950.   DOI   ScienceOn
20 Savadogo, O.; Lee, K.; Oishi, K.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. Electrochem. Commun. 2004, 6, 105.   DOI   ScienceOn
21 Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B 2005, 109, 22909.   DOI   ScienceOn
22 Okada, T.; Kaneko, M. Molecular Catalysts for Energy Conversion, Springer 2008.