• Title/Summary/Keyword: Carbon nitride

Search Result 216, Processing Time 0.03 seconds

A study on the humidity sensing properties of crystalline carbon nitride films (결정성 질화탄소막의 습도 감지특성에 관한 연구)

  • Lee, Ji-Gong;Ha, Se-Guen;Kim, Jung-Hun;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.88-91
    • /
    • 2003
  • Crystalline carbon nitride films have been attempted for an application of humidity sensors. The films were deposited on $Al_2O_3$ substrate having interdigitated electrodes by reactive RF magnetron sputtering system. The film revealed a good humidity-resistance characteristics as well as humidity-capacitance ones in the humidity range of $10\;{\sim}\;95\;RH(%)$. Temperature dependence was also investigated. These results suggest that carbon nitride film have a possibility for a new humidity-sensitive materials.

  • PDF

Preparation of Boron Compounds from Calcium Borate, Colemanite : Synthesis of Hexagonal Boron Nitride from Boric Oxide(III) (Colemanite 붕산염으로부터 붕소화합물의 제조 : 무수붕산으로부터 육방정 질화붕소의 합성 (III))

  • Jee, Mi-Jung;Jang, Jae-Hun;Paik, Jong-Hoo;Lee, Mi-Jai;Lim, Hyung-Mi;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.812-818
    • /
    • 2004
  • This study has been undertaken with objective of studying the mechanism and condition of formation of hexagonal boron nitride from reduction of boric okide in the presence of carbon under nitrogen atmosphere. It was found that the formation of hexagonal boron nitride was started at 1400$^{\circ}C$ and almost completed its conversion at 1550$^{\circ}C$. The morphology of boron nitride synthesized in this study was very fine and platelet. It was considered as reaction pathway of hexagonal boron nitride that boron oxide was reduced to born and evaporated by activated carbon, and then it was reacted with nitrogen.

Crystalline Analysis of Carbon Nitride Films Deposited by Reactive Sputtering System (반응성 스퍼터링 장치로 제작된 질화탄소막의 결정성 분석)

  • Lee, Ji-Gong;Ha, Se-Geun;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.164-167
    • /
    • 2003
  • Carbon nitride films with ${\beta}-C_3N_4$ crystals were grown by rf reactive magnetron sputtering system with negative DC bias. Chamber baking system to supply whole chamber with activation energy was used to reduce the contamination of H and O atoms. XRD peaks showed the existence of crystalline ${\beta}-C_3N_4$(200) and lonsdaleite structures. FTIR spectroscopy studies revealed that the film contain ${\alpha}-C_3N_4$ and ${\beta}-C_3N_4$ with $1011\;cm^{-1},\;1257\;cm^{-1}\;and\;1529\;cm^{-1}$ peaks. We could also find the grain growth of hexagonal structure from SEM photograph, which is coincident with the theoretical carbon nitride unit cell. ${\alpha}$-step was used to make the thickness profile of the grown films.

  • PDF

Preparation and Characterization of β-C3N4 in Presence of Seed Carbon Nitride Films Deposited by Laser-Electric Discharge Method

  • Kim, J.I.;Zorov, N.B.;Burdina, K.P
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure was developed for preparing bulk carbon nitride crystals from a polymeric $\alpha$ -C$_3$N$\_$4.2/ at high pressure and temperature in the presence of seeds of crystalline carbon nitride films prepared by a high voltage discharge plasma combined with pulsed laser ablation of graphite target. The samples were evaluated by x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrate that the nitrogen composition in $\alpha$ -C$_3$N$\_$4.2/ material initially containing more than 58% nitrogen decreases during the annealing process and reaches a common, stable composition of ~45%. The thermobaric experiments were performed at 10-77 kbar and 350-1200 $\^{C}$.

Study on blood compatibility of diamond-like carbon and titanium nitride films (Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구)

  • Yun Ju-Young;Bae Jin-Woo;Park Ki-Dong;Goo Hyun-Chul;Park Hyung-Dal;Chung Kwang-Wha
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2005
  • There is an increasing interest in developing novel coating to improve the blood compatibility of medical implants. Diamond-like carbon(DLC) and titanium nitride(TiN) films have been proposed as potential biomedical coatings due to their chemical k physical properties and moderate biocompatibility. To study the correlation between blood compatibility and physical properties of the films, the fibrinogen adsorption on the surface as well as morphology & wettability were investigated. The quantity of fibrinogen adsorption are Tower for TiN than DLC, which correlates with a higher hydrophilicity of TiN film. To reduce the quantity of fibrinogen adsorption on the film, plasma treatment and furnace annealing were performed, respectively. With the use of oxygen plasma and furnace annealing, the amount of fibrinogen adsorption on TiN film was remarkably reduced, while there was no decrease of the quantity with DLC.

Effects of Deposition Conditions on the Properties of Amorphous Carbon Nitride Thin Films by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 특성에 미치는 증착변수의 영향)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.150-154
    • /
    • 2003
  • Amorphous carbon nitride films were deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition technique (PECVD) using $CH_4$and $N_2$as reaction gases. The growth and film properties were investigated while the gas ratio and the working pressure were changed systematically. At 1 Torr working pressure, an increase in the $N_2$partial pressure results in a significant increase of the deposition rate as well as an apparent presence of C ≡N bonding, while little affecting the microstructure and amorphus nature of the films. In the case of changing the working pressure at a fixed $N_2$partial pressure of 98%, a film grown at a medium pressure of $1${\times}$10^{-2}$ Torr shows the most prominent C=N bonding nature and photoluminescent property.

Growth and Physical Characteristics of Crystalline Carbon Nitride Films Using Penning-type Source Sputerring System (페닝 소스 스퍼터링 장치를 이용한 결정성 질화탄소막의 성장 및 물리적 특성)

  • Lee, Sung-Pil;Chowdhury, Shaestagir
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.248-255
    • /
    • 2000
  • Penning type sputtering system which has two opposed targets was implemented and the physical characteristics of the deposited carbon nitride films were investigated. When argon ratio was reduced and nitrogen ratio was increased in the sputtering gas mixture, Fe was less sputtered. The grain size of grown carbon nitride films was distributed from $150{\AA}$ to $250{\AA}$. As nitrogen partial pressure increases, growth rate and nitrogen incorporation in the film increases.

  • PDF

Preparation and Characterization of Crystalline Carbon Nitride (결정질 질화탄소 박막의 합성과 그 특성 해석)

  • 김종일;배선기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.835-844
    • /
    • 2001
  • In this paper, we report the successful growth of crystalline carbon nitride films in Si(100) by a laser-electric discharge method. The laser ablation of the target leads to vapor plume plasma expending into the ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy(AES) were used to identify the binding structure and the content of the nitrogen species in the deposited films. The surface morphology of the films with a deposition time of 2 hours is studied using a scanning electron microscopy (SEM). In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.

  • PDF

Effects of Thermal Annealing on the Properties of Amorphous Carbon Nitride Films Deposited by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 물성에 미치는 열처리 효과)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2003
  • Amorphous carbon nitride films deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition (PECVD) technique using CH$_4$and $N_2$as reaction gases were thermally annealed at various temperatures under$ N_2$atmosphere, then their physical properties were investigated particularly as a function of annealing temperature. Above $600^{\circ}C$ a small amount of crystalline $\beta$-$C_3$$N_4$ phase evolves, while the film surface becomes very rough due to agglomeration of fine grains on the surface. As the annealing temperature increases, both the hardness and the $sp^3$ bonding nature are enhanced. In contrast to our expectation, higher annealing temperature results in a relatively higher friction mainly due to big increase in roughness at that temperature.

Humidity sensing properties of carbon nitride film according to fabrication conditions (제조 조건에 따른 질화탄소막의 습도 감지 특성)

  • Lee, Sung-Pil;Kim, Jung-Hoon;Lee, Hyo-Ung;Lee, Ji-Gong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • Carbon nitride films were deposited on various substrates for humidity sensors with meshed electrode by reactive RF magnetron sputtering system. As the ratio of injected nitrogen was decreased, the sensitivity of sensor was increased. When the ratio of injected nitrogen was $50{\sim}70%$, the sample showed the best linearity. The sensor impedance changed from $95.4{\;}k{\Omega}$ to $2.1{\;}k{\Omega}$ in a relative humidity range of 5 % to 95 %. The humidity sensors based on silicon wafer revealed higher lineality and faster response than those of alumina or quartz substrates. The adsorption saturation time of the sample was about 80 sec, and its desorption time was about 90 sec.