• Title/Summary/Keyword: Carbon molecular sieves

Search Result 7, Processing Time 0.018 seconds

Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition (벤젠 증착에 의해 제조된 활성탄소섬유의 $CH_4/CO_2$ 분자체 성질)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.614-619
    • /
    • 2005
  • The activated carbon fibers of different surface area and pore structures were modified by carbon deposition from the pyrolysis of benzene, in an attempt to obtain carbon molecular sieves of high adsorption capacity and selectivity for the separation of $CO_2/CH_4$ gas mixtures. The ACFs molecular sieves prepared from different temperature and time were tested by the static adsorption of $CO_2$ and $CH_4$ gas, and their pore structures were characterized by the $N_2$ adsorption isotherms. We are able to prepare ACF molecular sieve with good selectivity for $CO_2/CH_4$ separation and showing acceptable adsorption capacities from the change of porosity by carbon deposition of pyrolyzed benzene.

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes (가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용)

  • Jeong, Seo Gyeong;Ha, Seongmin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.488-495
    • /
    • 2022
  • Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves

  • Cho, Ki-Sook;Kim, Byung-Joo;Kim, Seok;Kim, Sung-Hyun;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.100-103
    • /
    • 2010
  • In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.

Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation

  • Xu, Yuxian;Chen, Xiaochuan;Wu, Dan;Luo, Yongjin;Liu, Xinping;Qian, Qingrong;Xiao, Liren;Chen, Qinghua
    • Carbon letters
    • /
    • v.25
    • /
    • pp.68-77
    • /
    • 2018
  • Soybean straw (SS)-based activated carbon was employed as a precursor to prepare carbon molecular sieves (CMSs) via chemical vapor deposition (CVD) technique using methane as carbon source. Prior to the CVD process, SS was activated by 0.5 wt% $ZnCl_2$, followed by a carbonization at $500^{\circ}C$ for 1 h in $N_2$ atmosphere. $N_2$ (77 K) adsorption-desorption and $CO_2$ (273 K) adsorption tests were carried out to analyze the pore structure of the prepared CMSs. The results show that increasing the deposition temperature, time or methane flow rate leads the decrease in $N_2$ adsorption capacity, micropore volume and average pore diameter of CMSs. The adsorption selectivity coefficient of $CO_2/CH_4$ achieves as high as 20.8 over CMSs obtained under the methane flow rate of $30mL\;min^{-1}$ at $800^{\circ}C$ for 70 min. The study demonstrates the prepared CMSs are a candidate adsorbent for $CO_2/CH_4$ separation.

Adsorption Studies on Carbon Molecular Sieves Prepared From Metal Impregnated Coconut Char (금속담지 야자탄으로 제조된 탄소분자체의 흡착 특성 연구)

  • ;;;;;;S.Vijayalakshmi
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.63-67
    • /
    • 2002
  • 우리나라는 1970 년대부터 급속한 경제발전과 더불어 생활수준의 향상에 따른 소비 성향의 변화 및 인구의 도시집중화현상 등으로 도시 쓰레기의 배출의 변화가 나타나서, 배출된 쓰레기의 양은 매년 증가되는 추세이다. 또한 배출된 쓰레기의 80% 이상을 단순 매립에 의존하는 처리방식이므로(환경부,1995), 유기성 폐기물이 혐기 소화되면서 다량의 가스와 침출수를 발생시켜 주변 지역의 자연 및 생활환경에 악영향을 미치며, 환경적, 사회적으로 큰 문제가 대두되고 있는 현실이다.(중략)

  • PDF

Effect of the Additives on Direct Dimethyl Carbonate Synthesis using Methanol and Carbon Dioxide over Ce0.8Zr0.2O2 Catalyst (Ce0.8Zr0.2O2 촉매 상에서 메탄올과 이산화탄소를 이용한 디메틸카보네이트 직접 합성에 대한 첨가제의 영향)

  • Han, Gi Bo;Park, No-Kuk;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.554-559
    • /
    • 2007
  • In order to improve the reactivity for the direct synthesis of dimethyl carbonate (DMC) using methanol and carbon dioxide, the various additives were used in the DMC synthesis using $Ce_{0.8}Zr_{0.2}O_2$ catalyst, and then effect of the additives was investigated. The various additives were molecular sieves 3A and the compounds having the various functional groups such as sulfate, carbonate, nitrate and phosphate. As a result, the compound such as $K_2SO_4$ and $Na_2SO_4$ having sulfate group were the most effective additive among the various additives. When $K_2SO_4$ was used as an additive in the direct synthesis of DMC, the amount of DMC was about 0.91 mmol, which was the highest mount of DMC among using only-$Ce_{0.8}Zr_{0.2}O_2$ catalyst and the various additives.