DOI QR코드

DOI QR Code

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves

  • Cho, Ki-Sook (Environment Systems Engineering, Korea University) ;
  • Kim, Byung-Joo (Nano Material Research Dept., Jeonju Institute of Machinery and Carbon Composites) ;
  • Kim, Seok (Dept. of Chemical and Biochemical Engineering, Pusan National Univ.) ;
  • Kim, Sung-Hyun (Environment Systems Engineering, Korea University) ;
  • Park, Soo-Jin (Dept. of Chemistry, Inha Univ.)
  • Published : 2010.01.20

Abstract

In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.

Keywords

References

  1. Calvert, S.; Englund, H. M. Handbook of Air Pollution Technology; John Wiley & Sons: New York, 1984.
  2. Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 282, 124. https://doi.org/10.1016/j.jcis.2004.08.110
  3. Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 292, 493. https://doi.org/10.1016/j.jcis.2005.05.066
  4. Kim, B. J.; Lee, Y. S.; Park, S. J. J. Colloid Interface Sci. 2008, 318, 530. https://doi.org/10.1016/j.jcis.2007.10.018
  5. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2008, 325, 121.
  6. Hu, X.; Lei, L.; Chu, H. P.; Yue, P. L. Carbon 1999, 37, 631. https://doi.org/10.1016/S0008-6223(98)00235-8
  7. Ryoo, R.; Ko, C. H.; Park, I. S. Chem. Commun. 1999, 15, 1413.
  8. Kim, J.; Choi, M.; Ryoo, R. Bull. Korean Chem. Soc. 2008, 29, 413. https://doi.org/10.5012/bkcs.2008.29.2.413
  9. Park, S. J.; Im, S. H. Bull. Korean Chem. Soc. 2008, 29, 777. https://doi.org/10.5012/bkcs.2008.29.4.777
  10. Chen, Y.; Ciuparu, D.; Lim, S.; Yang, Y.; Haller, G. L.; Pfefferle, L. J. Catal. 2004, 226, 351. https://doi.org/10.1016/j.jcat.2004.06.006
  11. Vidya, K.; Gupta, N. M.; Selvam, P. Mater. Res. Bull. 2004, 39, 2035. https://doi.org/10.1016/j.materresbull.2004.07.013
  12. Zhao, X. S.; Lu, G. Q.; Millar, G. J. Ind. Eng. Chem. Res. 1996, 35, 2075. https://doi.org/10.1021/ie950702a
  13. Hadjiivanov, K.; Tsoncheva, T.; Dimitrov, M.; Minchev, C.; Knozinger, H. Appl. Catal. A: General 2003, 241, 331. https://doi.org/10.1016/S0926-860X(02)00510-0
  14. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  15. de Boer, J. H.; Linsen, B. G.; Plas, T.; Zonder, G. J. J. Catal. 1965, 4, 649. https://doi.org/10.1016/0021-9517(65)90264-2
  16. Boehm, H. P. Adv. Catal. 1966, 16, 179. https://doi.org/10.1016/S0360-0564(08)60354-5
  17. Dubinin, M. M.; Radushkevich, L. V. Doklady Akad. Nauk SSSr. 1947, 55, 331.
  18. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
  19. Li, Z.; Gao, L. J. Phys. Chem. Solids 2003, 64, 223. https://doi.org/10.1016/S0022-3697(02)00281-0
  20. Park, S. J.; Jang, Y. S.; Kawasaki, J. Hwahak Konghak 2002, 40, 664.

Cited by

  1. Biomimetic Spider-Web-Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes vol.7, pp.17, 2017, https://doi.org/10.1002/aenm.201700331
  2. Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1321