Browse > Article
http://dx.doi.org/10.14478/ace.2022.1092

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes  

Jeong, Seo Gyeong (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Ha, Seongmin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.5, 2022 , pp. 488-495 More about this Journal
Abstract
Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.
Keywords
Carbon molecular sieves; Activated carbon; Gas adsorption; Separation; Chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Gil, S-K. Lee, and M. Rim, The impact of greenhouse gas abatement policy on manufacturing industries in south korea, The Korean Journal of Economic Studies, 69, 55-95 (2021).   DOI
2 H. Kim, J. Lee, S. Lee, J. Han, and I. Lee, Operating optimization and economic evaluation of multicomponent gas separation process using pressure swing adsorption and membrane process, Korean Chem. Eng. Res., 53, 31-38 (2015).   DOI
3 Z. Mousavi and H. R. Bozorgzadeh, Preparation of carbon molecular sieves from pistachio shell and walnut shell for kinetic separation of carbon monoxide, hydrogen and methane, Iran. J. Chem. Chem. Eng., 36, 71-80 (2017).
4 U. Morali, H. Demiral, and S. Sensoz, Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method, Powder Technol., 355, 716-726 (2019).   DOI
5 A. I. Shirley and A. I. LaCava, PSA performance of densely packed adsorbent beds, AIChE Journal, 41, 1389-1394 (1995).   DOI
6 Y. J. Kim, J. G. Lee, J. Y. Lee, and Y. T. Kang, Experimental study on PSA process for high purity CH4 recovery from biogas, Korean J. Air Cond. Refrig. Eng., 23, 281-286 (2011).   DOI
7 S. Cho, Current status and prospects of PSA gas separation technology, Chemical Industry And Technology, 15, 195 (1997).
8 M. R. Rahimpour, M. Ghaemi, S. M. Jokar, O. Dehghani, M. Jafari, S. Amiri, and S. Raeissi, The enhancement of hydrogen recovery in PSA unit of domestic petrochemical plant, Chem. Eng. J., 226, 444-459 (2013).   DOI
9 G. Jee, S. J. Lee, H. M. Moon, S. H. Lee, and C. H. Lee, Development of O2 Purifier by Pressure Swing Adsorption Process, KIGAS, 8, 37-47 (2004).
10 J. K. Jeon, Y. K. Park, and K. Chue, Study of PSA process for carbon dioxide recovery over zeolite adsorbent: Effect of rinse rate on process performance, J. Korean Soc. Atmos. Environ., 20, 99-110 (2004).
11 A. A. Abd, S. Z. Naji, A. S. Hashim, and M. R. Othman, Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review, J. Environ. Chem. Eng, 8, 104142 (2020).   DOI
12 A. A. Ahmad, M. Al-Raggad, and N. Shareef, Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: A review, Carbon Lett., 31, 957-971 (2021).   DOI
13 L. Wang, Y. Yao, Z. Zhang, L. Sun, W. Lu, W. Chen, and H. Chen, Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation, Chem. Eng. J., 251, 348-354 (2014).   DOI
14 A. Swiatkowski, Industrial carbon adsorbents, Stud. Surf. Sci. Catal., 120, 69-92 (2008).   DOI
15 W. Thongpat, J. Taweekun, and K. Maliwan, Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH, Carbon Lett., 31, 1079-1088 (2021).   DOI
16 A. Syakdani, Y. Bow, Rusdianasari, and M. Taufik, Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process using Pressure Swing Adsorption (PSA) Method. J. Phys.: Conf. Ser., 1167, 012055 (2019).   DOI
17 C. G. De Salazar, A. Sepulveda-Escribano and F. Rodriguez-Reinoso, Preparation of carbon molecular sieves by pyrolytic carbon deposition, Adsorption, 11, 663-667 (2005).   DOI
18 P. J. M. Carrott, I. P. P. Cansado, and M. M. L. R. Carrott, Carbon molecular sieves from PET for separations involving CH4, CO2, O2 and N2, Appl. Surf. Sci., 252, 5948-5952 (2005).   DOI
19 S. H. Moon and J. W. Shim, Molecular sieve properties for CH4/CO2 of activated carbon fibers prepared by benzene deposition, J. Kor. Soc. Environ. Eng., 27, 614-619 (2005).
20 M. J. Kim, K. H. Kim, Y. Kim, B. Yoo, and Y. S. Lee, Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts, Carbon Lett., 30, 675-682 (2020).   DOI
21 Y. Gogotsi, C. Portet, S. Osswald, J. M. Simmons, T. Yildirim, G. Laudisio, and J. E. Fischer, Importance of pore size in high-pressure hydrogen storage by porous carbons, Int. J. Hydrogen Energy, 34, 6314-6319 (2009).   DOI
22 M. Ahmad, W. W. Daud, and M. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Coll. Surf. A: Physicoche. Eng. Asp., 312, 131-135 (2008).   DOI
23 X. Qi, C. Qin, W. Zhong, C. Au, X. Ye, and Y. Du, Large-scale synthesis of carbon nanomaterials by catalytic chemical vapor deposition: a review of the effects of synthesis parameters and magnetic properties, Materials, 3, 4142-4174 (2010).   DOI
24 Y. Xu, X. Chen, D. Wu, Y. Luo, X. Liu, Q. Qian, L. Xiao, and Q. Chen, Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation, Carbon Lett., 25, 68-77 (2018).   DOI
25 D. Adinata, W. M. A. W. Daud, and M. K. Aroua, Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation, Fuel Process Technol., 88, 599-605 (2007).   DOI
26 S. J. Kang, G. J. Kim, M-S. Kim, B-J. Kim, S. Kim, J-S. Roh, D-H. Riu, S-J. Park, M-K. Seo, Y. Shul, K. H. An, K. S. Yang, S. K. Ryu, G. W. Lee, Y-S. Lee, J-M. Lee, C-H. Lee, S. Lim, Y-S. Lim, D-H. Jeong, K. Y. Cho, D. Cho, S. H. Chi, and I-P. Hong, Application Handbook of Carbon Materials, 1, 613, Daeyeongsa, Seoul, Korea (2008).
27 S-J. Lee, H. Ahn, J-G. Jee, M-B. Kim, J-H. Moon, Y-S. Bae, and C-H. Lee, Comparison of PSA and VSA processes for air separation, Clean Technol., 6, 101-109 (2004).
28 J. Zhang, S. Qu, L. Li, P. Wang, X. Li, Y. Che, and X. Li, Preparation of carbon molecular sieves used for CH4/N2 separation, J. Chem. Eng. Data, 23, 1737-1744 (2018).
29 S. E. Moradi, S. Amirmahmoodi, and M. J. Baniamerian, Hydrogen adsorption in metal-doped highly ordered mesoporous carbon molecular sieve, J. Alloys Compd., 498, 168-171 (2010).   DOI
30 M. Hemmat, A. Rahbar-Kelishami, and M. H. Vakili, Preparation of carbon molecular sieves and its impregnation with Co and Ni for CO2/N2 separation, Int. J. Environ. Sci. Technol., 15, 2213-2228 (2018).   DOI
31 Y. Kawabuchi, S. Kawano, and I. Mochida, Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene, Carbon, 34, 711-717 (1996).   DOI
32 C. Y. Yang, C. L. Kao and P. Y. Hung, Preparation of activated carbon from waste cation exchange resin and its application in wastewater treatment, Carbon Lett., 32, 461-474 (2022).   DOI
33 S. Kwon, Y. You, H. Lim, J. Lee, T.-S. Chang, Y. Kim, H. Lee, and B.-S. Kim, Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon, J. Ind. Eng. Chem., 83, 289-296 (2020).   DOI
34 Z. Y. Yang, D. C. Wang, Z. Y. Meng, and Y. Y. Li, Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve, Sep. Purif. Technol., 218, 130-137 (2019).   DOI
35 R. C. Bansal, J. B. Donnet, and H. F. Stoeckli, Active Carbon, Marcel Dekker, New York (1988).
36 B. Lee, Preparation and Characterization of Carbon Molecular Sieve for Separating Landfill gases, PhD Dissertation, Paichai University, Daejeon, Korea (2001).
37 M. B. Tahir, M. Rafique, M. S. Rafique, T. Nawaz, M. Rizwan, and M. Tanveer, Nanotechnology and Photocatalysis for Environmental Applications, M. B. Tahir, M. Rafique, M. S. Rafique (eds.), 119-138, Elsevier, UK (2020).
38 H. Demiral and I. Demiral, Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition, Adv. Powder Technol., 29, 3033-3039 (2018).   DOI
39 T. Orfanoudaki, G. Skodras, I. Dolios, and G. Sakellaropoulos, Production of carbon molecular sieves by plasma treated activated carbon fibers, Fuel, 82, 2045-2049 (2003).   DOI
40 J. Wang, Y. K. Park, and Y. M. Jo, Sequential improvement of activated carbon fiber properties for enhanced removal efficiency of indoor CO2, J. Ind. Eng. Chem., 89, 400-408 (2020).   DOI
41 W. S. Hong, Thin film vacuum process technology via chemical vapor deposition methods, Vacuum Magazine, 1, 9-13 (2014).   DOI
42 P. Carrott, I. Cansado, and M. R. Carrott, Carbon molecular sieves from PET for separations involving CH4, CO2, O2 and N2, Appl. Surf. Sci., 252, 5948-5952 (2006).   DOI
43 S-J. Son, J-S. Choi, K-Y. Choo, S-D. Song, S. Vijayalakshmi, and T-H. Kim, Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell, Korean J. Chem. Eng., 22, 291-297 (2005).   DOI
44 M. Mohammadi, G. N. Ghasem, and A. R. Mohamed, Production of carbon molecular sieves from palm shell through carbon deposition from methane, Chem. Ind. Chem. Eng. Q, 17, 525-533 (2011).   DOI
45 D. A. Bell, B. F. Towler, and M. Fan, Coal Gasification and Its Applications, 1st ed., William Andrew, Elsevier, UK (2011).
46 S. Cho, H. R. Yu, K. D. Kim, K. B. Yi, and Y. S. Lee, Surface characteristics and carbon dioxide capture characteristics of oxyfluorinated carbon molecular sieves, Chem. Eng. J., 211, 89-96 (2012).   DOI
47 T. Horikawa, J. i. Hayashi, and K. Muroyama, Preparation of molecular sieving carbon from waste resin by chemical vapor deposition, Carbon, 40, 709-714 (2002).   DOI