References
- Deng Y, Xu J, Liu Y, Mancl K. Biogas as a sustainable energy source in China: regional development strategy application and decision making. Renewable Sustainable Energy Rev, 35, 294 (2014). https://doi.org/10.1016/j.rser.2014.04.031.
- Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol, 85, 849 (2010). https://doi.org/10.1007/s00253-009-2246-7.
-
Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for
$CO_2/CH_4$ separation: a review. Int J Greenhouse Gas Control, 12, 84 (2013). https://doi.org/10.1016/j. ijggc.2012.10.009. - Cavenati S, Grande CA, Rodrigues AE. Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels, 20, 2648 (2006). https://doi.org/10.1021/ef060119e.
- Bekkering J, Broekhuis AA, Van Gemert WJT. Optimisation of a green gas supply chain: a review. Bioresour Technol, 101, 450 (2010). https://doi.org/10.1016/j.biortech.2009.08.106.
-
Xing R, Ho WSW. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for
$CO_2/CH_4$ separation. J Taiwan Inst Chem Eng, 40, 654 (2009). https://doi.org/10.1016/j.jtice.2009.05.004. -
Liu D, Yi H, Tang X, Zhao S, Wang Z, Gao F, Li Q, Zhao B. Adsorption separation of
$CO_2/CH_4$ gas mixture on carbon molecular sieves modified by potassium carbonate. J Chem Eng Data, 61, 2197 (2016). https://doi.org/10.1021/acs.jced.5b00742. -
Wu Y, Yang Y, Kong XM, Li P, Yu JG, Ribeiro AM, Rodrigues AE. Adsorption of pure and binary
$CO_2$ ,$CH_4$ , and$N_2$ gas components on activated carbon beads. J Chem Eng Data, 60, 2684 (2015). https://doi.org/10.1021/acs.jced.5b00321. - Santos MPS, Grande CA, Rodrigues AE. Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design. Ind Eng Chem Res, 50, 974 (2011). https://doi.org/10.1021/ie100757u.
-
Yu HR, Cho S, Bai BC, Yi KB, Lee YS. Effects of fluorination on carbon molecular sieves for
$CH_4$ /$CO_2$ gas separation behavior. Int J Greenhouse Gas Control, 10, 278 (2012). https://doi.org/10.1016/j. ijggc.2012.06.013. - Foley HC. Carbogenic molecular sieves: synthesis, properties and applications. Microporous Mater, 4, 407 (1995). https://doi.org/10.1016/0927-6513(95)00014-z.
- Miao Q, Tang Y, Xu J, Liu X, Xiao L, Chen Q. Activated carbon prepared from soybean straw for phenol adsorption. J Taiwan Inst Chem Eng, 44, 458 (2013). https://doi.org/10.1016/j. jtice.2012.12.006.
- Kang HU, Kim WG, Kim SH. Pore size control through benzene vapor deposition on activated carbon. Chem Eng J, 144, 167 (2008). https://doi.org/10.1016/j.cej.2008.01.017.
- Ahmad MA. Preparation of carbon molecular sieves from palm shell: effect of benzene deposition conditions. Adsorption, 15, 489 (2009). https://doi.org/10.1007/s10450-009-9199-0.
-
Cheng LH, Fu YJ, Liao KS, Chen JT, Hu CC, Hung WS, Lee KR, Lai JY. A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for
$CO_2$ capture. J Membr Sci, 460, 1 (2014). https://doi.org/10.1016/j.memsci.2014.02.033. - Atchudan R, Joo J, Pandurangan A. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Mater Res Bull, 48, 2205 (2013). https://doi.org/10.1016/j.materresbull.2013.02.048.
- Zhang T, Walawender WP, Fan LT. Preparation of carbon molecular sieves by carbon deposition from methane. Bioresour Technol, 96, 1929 (2005). https://doi.org/10.1016/j.biortech.2005.01.026.
- Villar-Rodil S, Navarrete R, Denoyel R, Albiniak A, Paredes JI, Martinez-Alonso A, Tascon JMD. Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. Microporous Mesoporous Mater, 77, 109 (2005). https://doi.org/10.1016/j.micromeso.2004.08.017.
- Landers J, Gor GY, Neimark AV. Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Aspects, 437, 3 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.007.
-
Pinto ML, Mestre AS, Carvalho AP, Pires J. Comparison of Methods to Obtain Micropore Size Distributions of Carbonaceous Materials from
$CO_2$ Adsorption Based on the Dubinin-Radushkevich Isotherm. Ind Eng Chem Res, 49, 4726 (2010). https://doi.org/10.1021/ie100080r. -
Chen Y, Li Z, Liu Q, Shen Y, Wu X, Xu D, Ma X, Wang L, Chen QH, Zhang Z, Xiang S. Microporous metal-organic framework with lantern-like dodecanuclear metal coordination cages as nodes for selective adsorption of
$C_2/C_1$ mixtures and sensing of nitrobenzene. Cryst Growth Des, 15, 3847 (2015). https://doi.org/10.1021/acs.cgd.5b00473. -
Qian Q, Machida M, Aikawa M, Tatsumoto H. Effect of
$ZnCl_2$ impregnation ratio on pore structure of activated carbons prepared from cattle manure compost: application of$N_2$ adsorptiondesorption isotherms. J Mater Cycles Waste Manage, 10, 53 (2008). https://doi.org/10.1007/s10163-007-0185-x. - Huang X, Cao JP, Zhao XY, Wang JX, Fan X, Zhao YP, Wei XY. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel, 169, 93 (2016). https://doi.org/10.1016/j. fuel.2015.12.011.
- Qian Q, Machida M, Tatsumoto H. Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresour Technol, 98, 353 (2007). https://doi.org/10.1016/j. biortech.2005.12.023.
- Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Santos Júnior OO, Visentainer JV, Almeida VC. NaOH-activated carbon of high surface area produced from guava seeds as a highefficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J, 288, 778 (2016). https://doi.org/10.1016/j.cej.2015.12.042.
-
Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ. Superior
$CO_2$ uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci, 5, 7323 (2012). https://doi.org/10.1039/c2ee21653a. - Veerakumar P, Chen SM, Madhu R, Veeramani V, Hung CT, Liu SB. Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg(II) ions. ACS Appl Mater Interfaces, 7, 24810 (2015). https://doi.org/10.1021/acsami.5b07900.