Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.01.100

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves  

Cho, Ki-Sook (Environment Systems Engineering, Korea University)
Kim, Byung-Joo (Nano Material Research Dept., Jeonju Institute of Machinery and Carbon Composites)
Kim, Seok (Dept. of Chemical and Biochemical Engineering, Pusan National Univ.)
Kim, Sung-Hyun (Environment Systems Engineering, Korea University)
Park, Soo-Jin (Dept. of Chemistry, Inha Univ.)
Publication Information
Abstract
In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.
Keywords
NO reduction; Mesoporous molecular sieve; Textural properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.   DOI
2 Li, Z.; Gao, L. J. Phys. Chem. Solids 2003, 64, 223.   DOI   ScienceOn
3 Park, S. J.; Jang, Y. S.; Kawasaki, J. Hwahak Konghak 2002, 40, 664.
4 Calvert, S.; Englund, H. M. Handbook of Air Pollution Technology; John Wiley & Sons: New York, 1984.
5 Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 282, 124.   DOI   ScienceOn
6 Hu, X.; Lei, L.; Chu, H. P.; Yue, P. L. Carbon 1999, 37, 631.   DOI   ScienceOn
7 Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 292, 493.   DOI   ScienceOn
8 Kim, B. J.; Lee, Y. S.; Park, S. J. J. Colloid Interface Sci. 2008, 318, 530.   DOI   ScienceOn
9 Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2008, 325, 121.
10 Ryoo, R.; Ko, C. H.; Park, I. S. Chem. Commun. 1999, 15, 1413.
11 Kim, J.; Choi, M.; Ryoo, R. Bull. Korean Chem. Soc. 2008, 29, 413.   DOI   ScienceOn
12 Park, S. J.; Im, S. H. Bull. Korean Chem. Soc. 2008, 29, 777.   DOI   ScienceOn
13 Chen, Y.; Ciuparu, D.; Lim, S.; Yang, Y.; Haller, G. L.; Pfefferle, L. J. Catal. 2004, 226, 351.   DOI   ScienceOn
14 Vidya, K.; Gupta, N. M.; Selvam, P. Mater. Res. Bull. 2004, 39, 2035.   DOI   ScienceOn
15 Zhao, X. S.; Lu, G. Q.; Millar, G. J. Ind. Eng. Chem. Res. 1996, 35, 2075.   DOI   ScienceOn
16 Hadjiivanov, K.; Tsoncheva, T.; Dimitrov, M.; Minchev, C.; Knozinger, H. Appl. Catal. A: General 2003, 241, 331.   DOI   ScienceOn
17 Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309.   DOI
18 Dubinin, M. M.; Radushkevich, L. V. Doklady Akad. Nauk SSSr. 1947, 55, 331.
19 de Boer, J. H.; Linsen, B. G.; Plas, T.; Zonder, G. J. J. Catal. 1965, 4, 649.   DOI   ScienceOn
20 Boehm, H. P. Adv. Catal. 1966, 16, 179.   DOI