Effect of the Additives on Direct Dimethyl Carbonate Synthesis using Methanol and Carbon Dioxide over Ce0.8Zr0.2O2 Catalyst

Ce0.8Zr0.2O2 촉매 상에서 메탄올과 이산화탄소를 이용한 디메틸카보네이트 직접 합성에 대한 첨가제의 영향

  • Han, Gi Bo (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Park, No-Kuk (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Yoon, Suk Hoon (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University) ;
  • Lee, Tae Jin (National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University)
  • 한기보 (영남대학교 디스플레이화학공학부 국가지정연구실) ;
  • 박노국 (영남대학교 디스플레이화학공학부 국가지정연구실) ;
  • 윤석훈 (영남대학교 디스플레이화학공학부 국가지정연구실) ;
  • 이태진 (영남대학교 디스플레이화학공학부 국가지정연구실)
  • Received : 2007.07.16
  • Accepted : 2007.08.08
  • Published : 2007.12.31

Abstract

In order to improve the reactivity for the direct synthesis of dimethyl carbonate (DMC) using methanol and carbon dioxide, the various additives were used in the DMC synthesis using $Ce_{0.8}Zr_{0.2}O_2$ catalyst, and then effect of the additives was investigated. The various additives were molecular sieves 3A and the compounds having the various functional groups such as sulfate, carbonate, nitrate and phosphate. As a result, the compound such as $K_2SO_4$ and $Na_2SO_4$ having sulfate group were the most effective additive among the various additives. When $K_2SO_4$ was used as an additive in the direct synthesis of DMC, the amount of DMC was about 0.91 mmol, which was the highest mount of DMC among using only-$Ce_{0.8}Zr_{0.2}O_2$ catalyst and the various additives.

본 연구에서는 메탄올과 이산화탄소를 이용한 디메틸카보네이트(dimethyl carbonate, 이하 DMC) 의 직접 합성에서 수율 증대를 위하여 주입된 다양한 첨가제의 영향을 살펴보았다. 그리고 첨가제의 주입과 동시에 반응조건을 달리하여 얻어진 반응특성을 살펴봄으로써 필요한 반응조건의 최적화를 살펴보았다. Citric complexation method에 의해 제조된 복합금속산화물 $Ce_{1-x}Zr_xO_2$ 촉매들 가운데, 가장 높은 성능을 지니고 있는 $Ce_{0.8}Zr_{0.2}O_2$ 촉매가 DMC 합성에서 사용되었다. 황산염(sulfate) 계열, 질산염(nitrate) 계열, 인산염(phosphate) 계열 및 제올라이트 등의 다양한 첨가제가 사용된 가운데 DMC 생성량의 변화가 관찰되었다. 그 결과, $-SO_4$를 지니는 황산염 계열의 $K_2SO_4$$Na_2SO_4$ 등의 첨가제가 $Ce_{0.8}Zr_{0.2}O_2$ 촉매와 함께 사용됨으로써 가장 높은 DMC 생성량을 얻었다. 기존의 첨가제 없이 $Ce_{0.8}Zr_{0.2}O_2$ 촉매가 사용된 경우, 약 0.6 mmol의 DMC 생성량을 얻을 수 있었으며, $K_2SO_4$ 첨가제가 동시에 주입된 경우 가장 높은 0.91 mmol의 향상된 DMC 생성량을 얻었다.

Keywords

References

  1. Pacheco, M. A. and Marshall, C. L., 'Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive,' Energy & Fuels, 11(1), 2-29(1997) https://doi.org/10.1021/ef9600974
  2. Jung, K. T. and Bell, A. T., 'An In-situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol Over Zirconia,' J. Catalysis, 204(2), 339-347(2001) https://doi.org/10.1006/jcat.2001.3411
  3. Tomishige, K. and Kunimori, K., 'Catalytic and Direct Synthesis of Dimethyl Carbonate Starting from Carbon Dioxide Using $CeO_{2}-ZrO_{2}$ Solid Solution Heterogeneous Catalyst: Effect of $H_{2}O$ Removal from the Reaction System,' Applied Catalysis A: General, 237(1/2), 103-109(2002) https://doi.org/10.1016/S0926-860X(02)00322-8
  4. Bertilsson, F. and Karlsson, H. T., '$CO_{2}$ Utilization Options, Part II: Assesment of Dimethyl Carbonate Production,' Energy Convers. Mgmt, 37(12), 1733-1739(1996) https://doi.org/10.1016/0196-8904(96)00019-2
  5. Ono, Y., 'Dimethyl Carbonate for Environmentally Benign Reactions,' Catalysis Today, 35(1/2), 15-25(1997) https://doi.org/10.1016/S0920-5861(96)00130-7
  6. Wu, X. L., Meng, Y. Z., Xiao, M. and Lu, Y. X., 'Direct Synthesis of Dimethyl Carbonate (DMC) Using Cu-Ni/VSO as Catalyst', J. Molecular Catalysis A: Chemical, 249(1/2), 93-97 (2006) https://doi.org/10.1016/j.molcata.2006.01.007
  7. Fang, S. and Fujimoto, K., 'Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol Catalyzed by Base,' Applied Catalysis A: General, 142(1), L1-L3(1996) https://doi.org/10.1016/0926-860X(96)00081-6
  8. Wu, X. L., Xiao, M., Meng, Y. Z. and Lub, Y. X., 'Direct Synthesis of Dimethyl Carbonate on $H_{3}PO_{4}$ Modified $V_{2}O_{5}$,' J. Molecular Catalysis A: Chemical, 238(1/2), 158-162(2005) https://doi.org/10.1016/j.molcata.2005.05.018
  9. Ballivet-Tkatchenko, D., Chambrey, S., Keiski, R., Ligabue, R., Plasseraud, L., Richard, P. and Turunen, H., 'Direct Synthesis of Dimethyl Carbonate with Supercritical Carbon Dioxide: Characterization of a Key Organotin Oxide Intermediate', Catalysis Today, 115(1/4), 80-87(2006) https://doi.org/10.1016/j.cattod.2006.02.025
  10. Yoshida, Y., Arai, Y., Kado, S., Kunimori, K. and Tomishige, K., 'Direct Synthesis of Organic Carbonates from the Reaction of $CO_{2}$ with Methanol and Ethanol over $CeO_{2}$ Catalysts,' Catalysis Today 115(1/4), 95-101(2006) https://doi.org/10.1016/j.cattod.2006.02.027
  11. Allaoui, L. A. and Aouissi, A., 'Effect of the Brsted Acidity on the Behavior of $CO_{2}$ Methanol Reaction,' J. Molecular Catalysis A: Chemical, 259(1/2), 281-285(2006) https://doi.org/10.1016/j.molcata.2006.06.034
  12. Slsaecs, N. and O'Sullivan, B., 'High Pressure Routes to Dimethyl Carbonate from Supercritical Carbon Dioxide,' Tetrahedron, 55(40), 11949-11956(1999) https://doi.org/10.1016/S0040-4020(99)00693-6
  13. Pinero, R., Garcia, J., Sokolov, M. and Cocero, M. J., 'Modelling of the Phase Behaviour for the Direct Synthesis of Dimethyl Carbonate from $CO_{2}$ and Methanol at Supercritical or Near Critical Conditions,' J. Chem. Thermodynamics, 39(4), 536-549(2007) https://doi.org/10.1016/j.jct.2006.09.009
  14. Zhao, T., Han, Y. and Sun, Y., 'Novel Reaction Route for Dimethyl Carbonate Synthesis from $CO_{2}$ and Methanol,' Fuel Processing Technology, 62(2/3), 187-194(2000) https://doi.org/10.1016/S0378-3820(99)00118-6
  15. Sakakura, T., Choi, J.-C., Saito, Y. and Sako, T., 'Synthesis of Dimethyl Carbonate from Carbon Dioxide: Catalysis and Mechanism,' Polyhedron, 19(5), 573-576(2000) https://doi.org/10.1016/S0277-5387(99)00411-8
  16. Jiang, C., Guo, Y., Wang, C., Hu, C., Wu, Y. and Wang, E., 'Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide in the Presence of Polyoxometalates Under Mild Conditions,' Applied Catalysis A: General, 256(1/2), 203-212(2003) https://doi.org/10.1016/S0926-860X(03)00400-9
  17. Chin, C. S., Shin, D., Won, G., Ryu, J., Kim, H. S. and Lee, B. G., 'The Effects of Catalyst Composition on the Catalytic Production of Dimethyl Carbonate,' J. Molecular Catalysis A: Chemical, 160(2), 315-321(2000) https://doi.org/10.1016/S1381-1169(00)00273-9
  18. Seo, E.-S., Park, N.-K., Chang, W.-C., Lee, T.-J. and Lee, B.-G., 'Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide,' Korean Chem. Eng. Res., 40(1), 9-15(2002)
  19. Seo, E.-S., Park, N.-K., Chang, W.-C., Lee, T.-J. and Lee, B.-G., 'Direct Synthesis of Dimethyl Carbonate by $Ce_{1-x}Zr_{x}O_{2}$ Catalysts,' J. Kor. Ind. Eng. Chem., 13(3), 241-246(2002)
  20. Reddy, B. M., Sreekanth, P. M., Lakshmanan, P. and Khan, A., 'Synthesis, Characterization and Activity Study of $SO_{4}^{2-}/Ce_{x}Zr_{1-x}O_{2}$ Solid Superacid Catalyst,' J. Molecular Chemistry A: Chemical, 244(1/2), 1-7(2006) https://doi.org/10.1016/j.molcata.2005.08.054
  21. Reddy, B. M., Sreekanth, P. M. and Lakshmanan, P., 'Sulfated $Ce_{1-x}Zr_{x}O_{2}$ Solid Acid Catalyst for Solvent Free Synthesis of Coumarins,' J. Molecular Chemistry A: Chemical, 256(1/2), 290-294(2006) https://doi.org/10.1016/j.molcata.2006.05.001
  22. Zaki, M. I., Hasan, M. A. and Pasupulety, L., 'Surface Reactions of Acetone on $Al_{2}O_{3},\;TiO_{2},\;ZrO_{2}$, and $CeO_{2}$: IR Spectroscopic Accessment of Impacts of the Surface Acid-base Properties,' Langmuir, 17(3), 768-774(2001) https://doi.org/10.1021/la000976p
  23. Rodriguez, J. A., Wang, X., Liu, G., Hanson, J. C., Hrbek, J., Peden, C. H. F., Iglesias-Juez, A. and Fernndez-Garca, M., 'Physical and Chemical Properties of $Ce_{1-x}Zr_{x}O_{2}$ Nanoparticles and $Ce_{1-x}Zr_{x}O_{2}$ (111) Surfaces: Synchrotron-based Studies,' J. Molecular Chemistry A: Chemical, 228(1/2), 11-19(2005) https://doi.org/10.1016/j.molcata.2004.09.069