• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.025 seconds

A Study on the Characteristics of Cell Reaction for the MCMB Carbon as Anode in Li-ion Batteries (리튬이온 전지용 카본(MCMB) 부극재료의 전지반응 특성)

  • 박영태;류호진;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.172-177
    • /
    • 1999
  • Graphite and carbonaceous materials showed an excellent capability as a negative electrode in Li-ion batteries because Li-ion can be intercalated and de-intercalated reversibly within most carbonaceous materials of layered structure. Also, the electrochemical potential of Li-intercalated carbon anode is almost identical with that of Li metal. In the present study, mesocarbon microbeads(MCMB) were used as anode electrode and its properties of charge/discharge and interfacial reaction with electrolyte were studied by Potentiostat/Galvanostat test, FT-IR analysis, XRD and SEM. The passivation film of solid-state was formed as the interface between electrode and electrolyte as the cell reaction began and, once formed, became thicker with repeated charge/discharge process. Also, the relationship between the passivation film formed at the electrode interface and storage capacity was discussed.

  • PDF

Study on blood compatibility of diamond-like carbon and titanium nitride films (Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구)

  • Yun Ju-Young;Bae Jin-Woo;Park Ki-Dong;Goo Hyun-Chul;Park Hyung-Dal;Chung Kwang-Wha
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2005
  • There is an increasing interest in developing novel coating to improve the blood compatibility of medical implants. Diamond-like carbon(DLC) and titanium nitride(TiN) films have been proposed as potential biomedical coatings due to their chemical k physical properties and moderate biocompatibility. To study the correlation between blood compatibility and physical properties of the films, the fibrinogen adsorption on the surface as well as morphology & wettability were investigated. The quantity of fibrinogen adsorption are Tower for TiN than DLC, which correlates with a higher hydrophilicity of TiN film. To reduce the quantity of fibrinogen adsorption on the film, plasma treatment and furnace annealing were performed, respectively. With the use of oxygen plasma and furnace annealing, the amount of fibrinogen adsorption on TiN film was remarkably reduced, while there was no decrease of the quantity with DLC.

Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, Bok-Won;Sohn, Kyung-Suk;Yoon, Joohoe;Lee, Jung-Hun
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Characterization of the UV oxidation for raw natural rubber (NR) was investigated in controlled conditions through image and FT-IR analysis. The UV oxidation was performed on a thin film of natural rubber coated on a KBr window at 254 nm and room temperature to exclude the thermal oxidation. Before or after exposure to UV light, image of the NR thin film was observed at a right or tilted angle. FT-IR absorption spectra were measured in transmission mode with the UV irradiation time. The UV oxidation of NR was examined by the changes of absorption peaks at 3425, 1717, 1084, 1477, 1377, and $833cm^{-1}$ which were assigned to hydroxyl group (-OH), carbonyl group (-C=O), carbon-oxygen bond (-C-O), methylene group $(-CH_2-)$, methyl group $(-CH_3)$, and cis-methine group $(cis-CCH_3=CH-)$, respectively. During the initial exposure period, the results indicated that the appearance of carbonyl group was directly related to the reduction of cis-methine group containing carbon-carbon double bond (-C=C-). Most of aldehydes or ketones from carbon-carbon double bonds were formed very fast by chain scission. A lot of long wide cracks with one orientation at regular intervals which resulted in consecutive chain scission were observed by image analysis. During all exposure periods, on the other hand, it was considered that the continuous increment of hydroxyl and carbonyl group was closely related to the decrement of methylene and methyl group in the allylic position. Therefore, two possible mechanisms for the UV oxidation of NR were suggested.

Degradation of thin carbon-backed lithium fluoride targets bombarded by 68 MeV 17O beams

  • Y.H. Kim;B. Davids;M. Williams;K.H. Hudson;S. Upadhyayula;M. Alcorta;P. Machule;N.E. Esker;C.J. Griffin;J. Williams;D. Yates;A. Lennarz;C. Angus;G. Hackman;D.G. Kim;J. Son;J. Park;K. Pak;Y.K. Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.919-926
    • /
    • 2023
  • To analyze the cause of the destruction of thin, carbon-backed lithium fluoride targets during a measurement of the fusion of 7Li and 17O, we estimate theoretically the lifetimes of carbon and LiF films due to sputtering, thermal evaporation, and lattice damage and compare them with the lifetime observed in the experiment. Sputtering yields and thermal evaporation rates in carbon and LiF films are too low to play significant roles in the destruction of the targets. We estimate the lifetime of the target due to lattice damage of the carbon backing and the LiF film using a previously reported model. In the experiment, elastically scattered target and beam ions were detected by surface silicon barrier (SSB) detectors so that the product of the beam flux and the target density could be monitored during the experiment. The areas of the targets exposed to different beam intensities and fluences were degraded and then perforated, forming holes with a diameter around the beam spot size. Overall, the target thickness tends to decrease linearly as a function of the beam fluence. However, the thickness also exhibits an increasing interval after SSB counts per beam ion decreases linearly, extending the target lifetime. The lifetime of thin LiF film as determined by lattice damage is calculated for the first time using a lattice damage model, and the calculated lifetime agrees well with the observed target lifetime during the experiment. In experiments using a thin LiF target to induce nuclear reactions, this study suggests methods to predict the lifetime of the LiF film and arrange the experimental plan for maximum efficiency.

A variation of elastic modulus of very thin diamond-like carbon films with deposition condition (증착조건에 따른 극미세 다이아몬드상 카본 박막의 탄성률 변화거동)

  • 정진원;이광렬;은광용;고대홍
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.387-395
    • /
    • 2001
  • The elastic modulus and the structural evolution were examined with the film thickness in polymeric, hard, graphitic diamond-like carbon (DLC) films. The DLC films used in the present study were prepared by radio frequency plasma assisted chemical vapor deposition (r.f.-PACVD) from $C_6H_6\;and\;CH_4$ gas. Elastic modulus of very thin DLC film was measured by free overhang method. This method has an advantage over the other methods. Because the substrate was removed by etching technique, the measured value is not affected by the mechanical property of the substrate. The structural evolution was investigated by the G-peak position of the Raman spectrum. The polymeric and graphitic films exhibited the decreased elastic modulus with decreasing film thickness. In polymeric films, the reason was that more polymeric film had been deposited in the initial stage of the film growth and in graphitic film more graphic films which had been deposited in the initial stage decreased the elastic modulus. The G-peak position of the Raman spectrum confirmed this result. On the other hand, the hard film showed the constant elastic modulus regardless to the film thickness. The structural change was not observed in this range of the film thickness.

  • PDF

TRIBOLOGICAL PROPERTIES OF DLC FILMS SLIDING AGAINST DIFFERENT STEELS

  • Suzuki, M.;Tanaka, A,
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.173-174
    • /
    • 2002
  • To study the effects of mating materials on the tribological properties of DLC films. we used a ball-on-plate reciprocating friction tester in dry air and mating materials of martensite stainless steel (hardened, annealed SUS440C), austenite stainless steels (SUS304), and bearing steel (hardened, annealed SUJ2). At a light load of 0.6 N, the friction coefficient always exceeded ${\mu}>0.3$. Tribological properties of DLC film were still excellent above 0.6 N, except in sliding against annealed SUJ2. Analysis using micro-laser Raman spectroscopy showed that the difference between annealed SUJ2 and others materials appears mainly due to structural change in film.

  • PDF

NO Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect (단층 탄소나노튜브의 일산화질소 가스에 대한 감응특성과 열처리 효과)

  • Kim, Min-Ju;Yun, Kwang-Hyun;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.292-297
    • /
    • 2004
  • Carbon nanotubes (CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in ${\alpha}$-Terpinol($C_{10}H_{17}OH$) solution. The CNT tilms were fabricated by screen printing method on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NO response and recovery time. The CNT sensor with a heater was compared to that without a heater. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.

Study on the nucleophilic reaction on Orgniac Thin Films (유기물 박막에서 일어나는 친핵성 반응에 대한 연구)

  • Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.170-171
    • /
    • 2006
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film has the broad main band of $880{\sim}1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the infrared spectra in the Si-O-C bond moved to low frequency according to the increasing of an oxygen flow rate. The chemical shift affected the carbon content in the SiOC film, and the decreasing of carbon atoms elongated the C-H bonding length, relatively. The main bond without the sharp Si-$CH_3$ bond at $1252cm^{-1}$ consisted of Si-C, C-O and Si-O bonds, and became the bonding structure of the Si-O-C bond.

  • PDF

Preparation of Boron Doped Fullerene Film by a Thermal Evaporation Technique using Argon Plasma Treatment and Its Electrochemical Application

  • Arie, Arenst Andreas;Jeon, Bup-Ju;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.127-130
    • /
    • 2010
  • Boron doped fullerene $C_{60}$ ($B:C_{60}$) films were prepared by the thermal evaporation of $C_{60}$ powder using argon plasma treatment. The morphology and structural characteristics of the thin films were investigated by scanning electron microscope (SEM), Fourier transform infra-red spectroscopy (FTIR) and x-ray photo electron spectroscopy (XPS). The electrochemical application of the boron doped fullerene film as a coating layer for silicon anodes in lithium ion batteries was also investigated. Cyclic voltammetry (CV) measurements were applied to the $B:C_{60}$ coated silicon electrodes at a scan rate of $0.05\;mVs^{-1}$. The CV results show that the $B:C_{60}$ coating layer act as a passivation layer with respect to the insertion and extraction of lithium ions into the silicon film electrode.

Transparent MWCNT Thin Films Fabricated by using the Spray Method (스프레이법으로 제작된 투명 MWCNT 박막)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.338-342
    • /
    • 2010
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. The MWCNT films were investigated as a transparent electrode for the solar cell, OLED, and field-emission display. MWCNT films were fabricated by air spray method, whose process is quite low-costed, using the multi-walled CNTs solution on glass substrates. Moreover, the most stable film was fabricated when the spraying time was 60 sec. The film that was sprayed with the MWCNT dispersion for 60 sec, has 300nm thick. And its electric resistivity, transmittance rate, mobility and carrier concentration are $6{\times}10^{-2}{\Omega}{\cdot}cm$, 50% at ${\lambda}=550mm$, $4.3{\times}10^{-2}cm^2/V{\cdot}s$ and $2.1{\times}10^{21}cm^{-3}$, respectively. Also, absorption energy of MWCNT films show from 3.9 eV to 4.6 eV. Furthermore, we can use MWCNT films fabricated by the spray method for the transparent electrode.