A Study on the Characteristics of Cell Reaction for the MCMB Carbon as Anode in Li-ion Batteries

리튬이온 전지용 카본(MCMB) 부극재료의 전지반응 특성

  • Published : 1999.02.01

Abstract

Graphite and carbonaceous materials showed an excellent capability as a negative electrode in Li-ion batteries because Li-ion can be intercalated and de-intercalated reversibly within most carbonaceous materials of layered structure. Also, the electrochemical potential of Li-intercalated carbon anode is almost identical with that of Li metal. In the present study, mesocarbon microbeads(MCMB) were used as anode electrode and its properties of charge/discharge and interfacial reaction with electrolyte were studied by Potentiostat/Galvanostat test, FT-IR analysis, XRD and SEM. The passivation film of solid-state was formed as the interface between electrode and electrolyte as the cell reaction began and, once formed, became thicker with repeated charge/discharge process. Also, the relationship between the passivation film formed at the electrode interface and storage capacity was discussed.

흑연 및 카본재료는 알칼리 금속을 intercalation/de-intercalation 시킬수 있는 특성을 지니고 있으며, 또한 Li-intercalated carbon의 화학 potential이 Li 금속에 가까운 낮은 값을 지닌 특성으로 리튬 이차전지의 anode 전극재료로서 널리 쓰일 가능성이 매우 크다. 본 연구에서는 카본재료 중 mesocarbon microbeads (MCMB)를 리튬 이차전지의 anode 전극재료로 사용하여 전지반응을 수행하고, 전극의 충.방 전 특성과 전극계면 반응특성에 대하여 연구하였다. 즉, Li/carbon(MCMB) 전지 cell를 제작하고 전해질과 전극계면에서 일어나는 전기화학 반응특성을 충.방 전 시험, Potentionat/Galvanostat 시험, FT-IR 분석, XRD 및 SED 분석에 의하여 고찰하였다. 전지반응이 진행되면서 전극과 전해질 계면에서 고체상태의 부동태 막 (passivation film)이 형성되었으며, 일단 형성된 막은 전해질 내에 용해되지 않고 충.방 전 횟수가 증가하면서 두께가 증가되었다. 또한, 이러한 전극 계면에서 형성된 부동태 막과 중전용량과의 관계에 대하여 고찰하였다.

Keywords

References

  1. Electrochimica Acta v.38 no.9 Historical Development of Rechargeable Li-thium Batteries in Japan Z. I. Takehara;K. Kanamura
  2. Mater. Sci. and Eng. v.31 Lattice Vibrations in Graphite and Intercalation Coumpounds of Graphite M. S. Dresselhaus;G. Dresselhaus;P. C. Eklund;D. D. L. Chung
  3. J. Power Sources v.26 Carbon as Negative Electrodes in Lithium Secondary Cells R. Kanno;Y. Takeda;T. Ichikawa;K Nakanishi;O. Yamamoto
  4. Electrochemical and Physicochemical Properties K. Kinoshita
  5. J. Electrochem. Soc. v.140 no.4 Electrochemical Intercalation of Ithium into Graphite Z. X. Shu;R. S. McMillan;J. J. Murray
  6. Science v.270 Mechanisms for Lithium Insertion in Carbonaceous Materials J. R. Dahn;T. Zheng;Y. Liu;J. S. Xue
  7. J. Electrochem. Soc. v.143 Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium-ion Batteries W. Xing;J. S. Xue;J. R. Dahn
  8. J. Electrochem. Soc. v.143 no.7 Hysteresis during Lithium Insertion in Hydrogen-Containing Carbons T. Zheng;W. R. McKinnon;J. R. Dahn
  9. J. Electrochem. Soc. v.143 no.11 Correlation between Lithium Intercalation Capacity and Microstructure in Hard Carbons W. Xing;J. S Xue;T. Zheng;A. Gibaud;J. R. Dahn
  10. 13th Int'l Seminar on Prim. & Sec. Battery Tech. & Appl. Interfacial Phenomena at the Carbon-Lithium Electrode R. Yazami;M. Deschamps
  11. Electrochem. Soc. Inc. v.97 no.18 Digradation of Mixed Carbonate Electrolytes on $Li^+-ion$ Battery Graphite Electrodes;An In-Situ DEMS Study R. Imhof;P. Novak
  12. Electrochem. Soc. Inc. v.97 no.18 Study of SEI Formation on HOPG in Different Electrolytes D. Bar-Tow;E. Peled;L. Burstein
  13. Synthetic Metals v.44 Observations of Staging in the Electro-chemical Intercalation of Lithium into Graphite from Dimethyl Sulfoxide Solutions P. Schoderbock;H. P. Boehm