DOI QR코드

DOI QR Code

Degradation of thin carbon-backed lithium fluoride targets bombarded by 68 MeV 17O beams

  • Y.H. Kim (Department of Nuclear Engineering, Hanyang University) ;
  • B. Davids (TRIUMF) ;
  • M. Williams (TRIUMF) ;
  • K.H. Hudson (TRIUMF) ;
  • S. Upadhyayula (TRIUMF) ;
  • M. Alcorta (TRIUMF) ;
  • P. Machule (TRIUMF) ;
  • N.E. Esker (TRIUMF) ;
  • C.J. Griffin (TRIUMF) ;
  • J. Williams (TRIUMF) ;
  • D. Yates (TRIUMF) ;
  • A. Lennarz (TRIUMF) ;
  • C. Angus (Department of Physics, University of York) ;
  • G. Hackman (TRIUMF) ;
  • D.G. Kim (Department of Nuclear Engineering, Hanyang University) ;
  • J. Son (Department of Nuclear Engineering, Hanyang University) ;
  • J. Park (Korea Atomic Energy Research Institute) ;
  • K. Pak (Department of Nuclear Engineering, Hanyang University) ;
  • Y.K. Kim (Department of Nuclear Engineering, Hanyang University)
  • Received : 2022.08.24
  • Accepted : 2022.10.28
  • Published : 2023.03.25

Abstract

To analyze the cause of the destruction of thin, carbon-backed lithium fluoride targets during a measurement of the fusion of 7Li and 17O, we estimate theoretically the lifetimes of carbon and LiF films due to sputtering, thermal evaporation, and lattice damage and compare them with the lifetime observed in the experiment. Sputtering yields and thermal evaporation rates in carbon and LiF films are too low to play significant roles in the destruction of the targets. We estimate the lifetime of the target due to lattice damage of the carbon backing and the LiF film using a previously reported model. In the experiment, elastically scattered target and beam ions were detected by surface silicon barrier (SSB) detectors so that the product of the beam flux and the target density could be monitored during the experiment. The areas of the targets exposed to different beam intensities and fluences were degraded and then perforated, forming holes with a diameter around the beam spot size. Overall, the target thickness tends to decrease linearly as a function of the beam fluence. However, the thickness also exhibits an increasing interval after SSB counts per beam ion decreases linearly, extending the target lifetime. The lifetime of thin LiF film as determined by lattice damage is calculated for the first time using a lattice damage model, and the calculated lifetime agrees well with the observed target lifetime during the experiment. In experiments using a thin LiF target to induce nuclear reactions, this study suggests methods to predict the lifetime of the LiF film and arrange the experimental plan for maximum efficiency.

Keywords

Acknowledgement

This work was supported by the Rare Isotope Science Project of the Institute for Basic Science funded by the Ministry of Science and ICT and the NRF of Korea (2013M7A1A1075764). The authors acknowledge the support and assistance provided by the faculty of the Department of Nuclear Engineering, School of Engineering, Hanyang University. The authors acknowledge the generous support of the Natural Sciences and Engineering Research Council of Canada. TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada.

References

  1. J. Yntema, F. Nickel, Lecture Notes in Physics, Experimental Methods in Heavy Ion Physics, 83, Springer, Berlin, Heidelberg, New York, 1978, https://doi.org/10.1007/3-540-08931-4_19.
  2. S.G. Lebedev, Stripper target lifetime estimations, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 613 (2010) 442-447, https://doi.org/10.1016/j.nima.2009.09.097.
  3. K. Ammigan, et al., The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility, Proc. IPAC2017, Copenhagen, Denmark, 2017, pp. 3593-3596.
  4. T. Ishida, et al., Radiation Damage Studies on Titanium Alloys as High Intensity Proton Accelerator Beam Window Materials, Proceedings of the 14th International Workshop on Spallation Materials Technology, 2020, https://doi.org/10.7566/JPSCP.28.041001.
  5. B. Davids, et al., Initial operation of the recoil mass spectrometer EMMA at the ISAC-II facility of TRIUMF, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 930 (2019) 191-195, https://doi.org/10.1016/j.nima.2019.03.070.
  6. R.E. Laxdal, M. Marchetto, The ISAC post-accelerator, Hyperfine Interact. 225 (1) (2014) 79-97, https://doi.org/10.1007/s10751-013-0884-8.
  7. B.N. Gikal, G.G. Gul'bekyan, V.I. Kazacha, D.V. Kamanin, Calculation of Lifetime of Charge-Exchanging Carbon Targets in Intense Heavy Ion Beams, Flerov Laboratory of Nuclear Reactions Technical Report, 2005. JINR-R-9-2005-110.
  8. G. Battistoni, F. Cerutti, A. Fasso, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, P.R. Sala, The FLUKA code: description and benchmarking, in: Proc. AIP Conference 896, American Institute of Physics, 2007, https://doi.org/10.1063/1.2720455, 1.
  9. S. Elhadj, M.J. Matthews, S.T. Yang, D.J. Cooke, J.S. Stolken, R.M. Vignes, V.G. Draggoo, S.E. Bisson, Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials, Appl. Phys. Lett. 96 (2010) 1-4, https://doi.org/10.1063/1.3291665.
  10. B. Dayal, Lattice spectrum, specific heat, and thermal expansion of lithium and sodium fluorides, Proc. Indian Acad. Sci. Sect. A 20 (1944) 138-144, https://doi.org/10.1007/BF03046862.
  11. V. Palankovski, Q. Rudiger, Analysis and Simulation of Heterostructure Devices, Springer Science & Business Media, 2004, https://doi.org/10.1007/978-3-7091-0560-3.
  12. S.A. Khan, A. Tripathi, M. Toulemonde, C. Trautmann, W. Assmann, Sputtering yield of amorphous 13C thin films under swift heavy-ion irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 314 (2013) 34-38, https://doi.org/10.1016/j.nimb.2013.05.044.
  13. M. Shamsa, W.L. Liu, A.A. Balandin, C. Casiraghi, W.I. Milne, A.C. Ferrari, Thermal conductivity of diamond-like carbon films, Appl. Phys. Lett. 89 (16) (2006), 161921, https://doi.org/10.1063/1.2362601.
  14. R.K. Burns, Preliminary Thermal Performance Analysis of the Solar Brayton Heat Receiver, National Aeronautics and Space Administration, 1971.
  15. D. Marx, F. Nickel, W. Thalheimer, Rotating sandwich targets of isotopically enriched lead for high intensity heavy ion beams, Nucl. Instrum. Methods 167 (1) (1979) 151-152, https://doi.org/10.1016/0029-554X(79)90496-8.
  16. M. Ohring, Materials Science of Thin Films: Depositon & Structure, Elsevier, 2001, https://doi.org/10.1016/B978-012524975-1/50012-4.
  17. G.W. Thomson, The Antoine equation for vapor-pressure data, Chem. Rev. 38 (1) (1946) 1-39, https://doi.org/10.1021/cr60119a001.
  18. A. Miller, CRC handbook of chemistry and physics, 1997-1998, Radiat. Phys. Chem. 53 (5) (1998), https://doi.org/10.1016/s0969-806x(97)84047-9, 584-584.
  19. D.L. Hildenbrand, W.F. Hall, F. Ju, N.D. Potter, Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides, J. Chem. Phys. 40 (10) (1964) 2882-2890, https://doi.org/10.1063/1.1724921.
  20. P. Sigmund, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184 (2) (1969) 383-416, https://doi.org/10.1103/PhysRev.184.383.
  21. J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods 174 (1980) 257-269, https://doi.org/10.1016/0029-554x(80)90440-1.
  22. M.T. Robinson, I.M. Torrens, Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation, Phys. Rev. 9 12 (1974) 5008-5024, https://doi.org/10.1103/PhysRevB.9.5008.
  23. J.P. Biersack, W. Eckstein, Sputtering studies with the Monte Carlo program TRIM.SP, Appl. Phys. Solid. Surface. 34 (1984) 73-94, https://doi.org/10.1007/BF00614759.
  24. J.P. Biersack, Computer simulations of sputtering, Nucl. Instrum. Methods Phys. Res. B. 27 (1987) 21-36, https://doi.org/10.1016/0168-583X(87)90005-X.
  25. W. Moller, W. Eckstein, Tridyn - a TRIM simulation code including dynamic composition changes, Nucl. Instrum. Methods Phys. Res. B. 2 (1984) 814-818, https://doi.org/10.1016/0168-583X(84)90321-5.
  26. W. Takeuchi, Y. Yamamura, Computer studies of the energy spectra and reflection coefficients of light ions, Radiat. Eff. 71 (1983) 53-64, https://doi.org/10.1080/00337578308218603.
  27. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, The Stopping and Range of Ions in Solids, SRIM Co, 2008, https://doi.org/10.1007/978-3-642-68779-2_5.
  28. R.E. Johnson, R. B.U, Electronic sputtering: from atomic physics to continuum mechanics, Phys. Today 45 (3) (1992) 28, https://doi.org/10.1063/7.881332.
  29. R.L. Fleicher, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, Univ of California Press, 1975, https://doi.org/10.1525/9780520320239.
  30. Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process, J. Phys. Condens. Matter 6 (1994) 6733-6750, https://doi.org/10.1088/0953-8984/6/34/006.
  31. E.M. Bringa, R.E. Johnson, Coulomb explosion and thermal spikes, Phys. Rev. Lett. 88 (2002) 4, https://doi.org/10.1103/PhysRevLett.88.165501.
  32. R. Behrisch, V.M. Prozesky, H. Huber, W. Assmann, Hydrogen desorption induced by heavy-ions during surface layer analysis with ERDA, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 118 (1996) 262-267, https://doi.org/10.1016/0168-583X(95)01094-7.
  33. C. Dufour, A. Audouard, F. Beuneu, J. Dural, J.P. Girard, A. Hairie, M. Levalois, E. Paumier, M. Toulemonde, A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage? J. Phys. Condens. Matter 5 (1993) 4573-4584, https://doi.org/10.1088/0953-8984/5/26/027.
  34. M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 166 (2000) 903-912, https://doi.org/10.1016/S0168-583X(99)00799-5.
  35. C. Dufour, Z.G. Wang, E. Paumier, M. Toulemonde, Transient thermal process induced by swift heavy ions: defect annealing and defect creation in Fe and Ni, Bull. Mater. Sci. 22 (1999) 671-677, https://doi.org/10.1007/BF02749984.
  36. M. Kumar, S.A. Khan, P. Rajput, F. Singh, A. Tripathi, D.K. Avasthi, A.C. Pandey, Size effect on electronic sputtering of LiF thin films, J. Appl. Phys. 102 (2007), https://doi.org/10.1063/1.2794694.
  37. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, C. Trautmann, Nanometric transformation of the matter by short and intense electronic excitation: experimental data versus inelastic thermal spike model, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 277 (2012) 28-39, https://doi.org/10.1016/j.nimb.2011.12.045.
  38. M.P.R. Waligorski, R.N. Hamm, R. Katz, The radial distribution of dose around the path of a heavy ion in liquid water, Int. J. Radiat. Appl. Instrum. Nucl. Tracks Radiat. Meas. 11 (6) (1986) 309-319, https://doi.org/10.1016/1359-0189(86)90057-9.
  39. M. Toulemonde, W. Assmann, C. Trautmann, F. Gruner, Jetlike component in sputtering of LiF induced by swift heavy ions, Phys. Rev. Lett. 88 (2002) 576021-576024, https://doi.org/10.1103/PhysRevLett.88.057602.
  40. P. Sigmund, C. Claussen, Sputtering from elastic-collision spikes in heavy-ion-bombarded metals, J. Appl. Phys. 52 (1981) 990-993, https://doi.org/10.1063/1.328790.
  41. J. Bohdansky, Universal relation for the sputtering yield of monatomic solids at normal ion incidence, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 230 (B2) (1983) 587-591, https://doi.org/10.1016/0168-583X(84)90271-4.
  42. L.E. Seiberling, J.E. Griffith, T.A. Tombrello, Thermalized ion explosion model for high energy sputtering and track registration, Radiat. Eff. 52 (1980) 201-209, https://doi.org/10.1080/00337578008210033.
  43. A. Guentherschulze, Cathodic sputtering an analysis of the physical processes, Vacuum 3 (1953) 360-374, https://doi.org/10.1016/0042-207X(53)90410-2.
  44. A. Refke, V. Philipps, E. Vietzke, Chemical erosion behavior of graphite due to energetic oxygen impact, J. Nucl. Mater. 250 (1997) 13-22, https://doi.org/10.1016/S0022-3115(97)00239-0.
  45. S.G. Lebedev, Stripper target lifetime estimations, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 613 (2010) 442-447, https://doi.org/10.1016/j.nima.2009.09.097.
  46. F. Herrmann, P. Pinard, Y. Farge, About the displacement of the lithium ion in lithium fluoride by accelerated electrons, J. Phys. C Solid State Phys. 7 (1974), https://doi.org/10.1088/0022-3719/7/11/001.
  47. F. Vukovi c, J.M. Leyssale, P. Aurel, N.A. Marks, Evolution of threshold displacement energy in irradiated graphite, Phys. Rev. Appl. 10 (2018) 1-12, https://doi.org/10.1103/PhysRevApplied.10.064040.
  48. B.H. Armitage, J.D.H. Hughes, D.S. Whitmell, N.R.S. Tait, D.W.L. Tolfree, The enhancement of the lifetime of carbon stripper foils by a slackening technique, Nucl. Instrum. Methods 167 (1979) 25-27, https://doi.org/10.1016/0029-554X(79)90470-1.