• Title/Summary/Keyword: Carbon diffusion

Search Result 562, Processing Time 0.028 seconds

Synthesis of Pentadentate Schiff Base Molybdenum(Ⅴ) Complexes and Their Electrochemical Properties in Aprotic Solvents (다섯자리 Schiff Base Molybdenum(Ⅴ) 착물들의 합성과 비수용매에서의 전기화학적 성질)

  • Kim, Seon Suk;Choe, Ju Hyeong;Choe, Yong Guk;Jeong, Byeong Gu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 1994
  • Pentadentate Schiff base molybdenum(Ⅴ) complexes such as [Mo(Ⅴ)O(Sal-DET)(NCS)] and [Mo(Ⅴ)O(Sal-DPT)(NCS)] were synthesized by Sabat method. The structure of these complexes were identified by elemental analysis, spectroscopy, and thermogravimetric analysis(T.G.A.). It was found that the mole ratio of Schiff base ligand to the complexes was found to be 1 : 1. The redox processes of the complexes were investigated by cyclic voltammetric and differential pulse polarographic technique in nonaqueous solvent containing 0. 1 M tetraethyl ammonium perchlorate(TEAP) as supporting electrolyte at glassy carbon electrode. It was found that diffusion controlled reduction processes of four steps with one electron were 2Mo(Ⅴ)$\rightleftarrow^{e-}$ Mo(Ⅴ)Mo(Ⅳ) $\longrightarrow^{e-}$ 2Mo(Ⅳ), Mo(Ⅳ) $\longrightarrow^{e-}$ Mo(Ⅲ) $\longrightarrow^{e-}$ Mo(Ⅱ)

  • PDF

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Global Fitting Functions for Kinetics of Fe-Selective Chlorination in Ilmenite and Successive Chlorination of Beneficiated TiO2 (일메나이트 중 철의 선택적 염화와 선광된 TiO2의 추가 염화반응에 대한 글로벌 피팅함수)

  • Chung, Dong-Kyu;Won, Yong Sun;Kim, Yong-Ha;Jung, Eun-Jin;Song, Duk-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.412-424
    • /
    • 2019
  • Global fitting functions for Fe-selective chlorination in ilmenite($FeTiO_2$) and successive chlorination of beneficiated $TiO_2$ are proposed and validated based on a comparison with experimental data collected from the literature. The Fe-selective chlorination reaction is expressed by the unreacted shrinking core model, which covers the diffusion-controlling step of chlorinated Fe gas that escapes through porous materials of beneficiated $TiO_2$ formed by Fe-selective chlorination, and the chemical reaction-controlling step of the surface reaction of unreacted solid ilmenite. The fitting function is applied for both chemical controlling steps of the unreacted shrinking core model. The validation shows that our fitting function is quite effective to fit with experimental data by minimum and maximum values of determination coefficients of $R^2$ as low as 0.9698 and 0.9988, respectively, for operating parameters such as temperature, $Cl_2$ pressure, carbon ratio and particle size that change comprehensively. The global fitting functions proposed in this study are expressed simply as exponential functions of chlorination rate(X) vs. time(t), and each of them are validated by a single equation for various reaction conditions. There is therefore a certain practical merit for the optimal process design and performance analysis for field engineers of chlorination reactions of ilmenite and $TiO_2$.

A Study on Portable Smart Tester for Fault Diagnosis of Electric Vehicle Charger (전기 자동차 충전기의 고장진단을 위한 휴대형 스마트 시험기에 관한 연구)

  • Kim, Chul-Soo;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.161-168
    • /
    • 2019
  • Recently, the development and dissemination of electric vehicles is increasing as a solution for carbon and emission reduction. In Korea, the supply of electric vehicles and the expansion of chargers are increasing rapidly every year under the supervision of the Ministry of Environment. In this paper, we study the portable smart test technology which enables quick check of charge related to faults in both electric car and charger to solve the problem of failure which is inevitable in the diffusion of electric car charger. To verify the normal operation of the communication protocol between the electric car and the charger, a hardware module and software were constructed, and a portable tester based on the international standard considering the V2G technology was developed and evaluated.

ZnO@Ni-Co-S Core-Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors

  • Sui, Yanwei;Zhang, Man;Hu, Haihua;Zhang, Yuanming;Qi, Jiqiu;Wei, Fuxiang;Meng, Qingkun;He, Yezeng;Ren, Yaojian;Sun, Zhi
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850148.1-1850148.9
    • /
    • 2018
  • The interconnected three-dimensional Ni-Co-S nanosheets were successfully deposited on ZnO nanorods by a one-step potentiostatic electrodeposition. The Ni-Co-S nanosheets provide a large electrode/electrolyte interfacial area which has adequate electroactive sites for redox reactions. Electrochemical characterization of the ZnO@Ni-Co-S core-shell nanorods presents high specifc capacitance (1302.5 F/g and 1085 F/g at a current density of 1 A/g and 20 A/g), excellent rate capabilities (83.3% retention at 20 A/g) and great cycling stability (65% retention after 5000 cycles at a current density of 30 A/g). The outstanding electrochemical performance of the as-prepared electrode material also can be ascribed to these reasons that the special structure improved electrical conductivity and allowed the fast diffusion of electrolyte ions.

Corrosion Failure Analysis of Flow Plate in Plate Heat Exchanger (판형 열교환기 전열판의 부식 파손 분석)

  • Song, Min Ji;Choi, Gahyun;Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.204-209
    • /
    • 2021
  • Corrosion failure analysis of the flow plate, which is one of the accessories of the plate heat exchanger in a district heating system, was performed. The flow plate is made of 316 stainless steel, and water at different temperatures in the flow plate exchanges heat in a non-contact manner. The flow plate samples in which water mixing issues occurred were collected. Corrosion-induced pits, oxides, and contaminants were observed at locations where two plates are regularly in contact. The EDS analysis of the surface oxides and contaminants revealed that they were composed of carbon, silicon, and magnesium, which came from chemical adhesives. The IC/ICP analyses showed that the concentration of chloride ions was 30 ~ 40 ppm, which was not sufficient to cause corrosion of stainless steel. In the crevice, a local decrease in dissolved oxygen occurs along with an increase in chloride ions, thus forming an acidic environment. These environments destroyed the passive film of stainless steel, resulting in pits. Moreover, contaminants formed a narrower gap between the two metal plates and inhibited the diffusion of ions, thereby accelerating crevice corrosion.

Surface Morphology Changes of Lithium/Sulfur Battery using Multi-walled carbon nanotube added Sulfur Electrode during Cyclings (탄소나노튜브가 첨가된 유황전극을 사용한 리튬/유황 전지의 사이클링에 의한 표면형상변화)

  • Park, Jin-Woo;Yu, Ji-Hyun;Kim, Ki-Won;Ryu, Ho-Suk;Ahn, Jou-Hyeon;Jin, Chang-Soo;Shin, Kyung-Hee;Kim, Young-Chul;Ahn, Hyo-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • We investigated the surface morphology changes of a lithium/sulfur battery using multi-walled canbon nanotube added sulfur electrode during charge-discharge cycling. The Li/S cell showed the first discharge capacity of 1286 mAh/g-S, which utilized is 71% of the theoretical value. It decreased to 328 mAh/g-S at the 100th cycle, which corresponds to about 19% utilization of the total sulfur in the cathode. The spherical lumps of the reaction product were observed on the surface of the sulfur electrode. This material was verified as lithium sulfide by X-ray diffraction measurement. The pores in the separator were filled with reaction product. Thus the diffusion of the $Li^+$ ion decreased, which resulted in the decreased capacity of the Li/S cell.

Review of ESG Challenges in Supply Chain Management Using Text Analysis (ESG 경영시대의 공급망 관리 분야 과제: 텍스트 분석을 활용하여)

  • Rha, Jin Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.145-156
    • /
    • 2022
  • In recent years, as there is growing concern with ESG (Environmental, Social, and Governance), the strategic direction of business management is changing from maximizing shareholders wealth to maximizing stakeholders value. ESG is reshaping a corporation's supply chain management strategies. The purpose of this study is to explore the ESG challenges in supply chain management. As a result of network text analysis and topic modeling analysis on 3226 news articles, 'Suppliers', 'Sustainability', 'Shared Growth' 'Carbon Neutral', 'Safety and Health', 'Responsible Business Alliance', 'Supply Chain Due Diligence Law' were identified as the main issue. Since ESG initiatives in the supply chain are not limited to the efforts of individual firms, future research should focus on figuring out what difficulties and challenges exist in the diffusion of ESG practices along multi-tiered supply chains, and how to overcome them.

Influence of inorganic composition and filler particle morphology on the mechanical properties of self-adhesive resin cements

  • Marina Rodrigues Santi ;Rodrigo Barros Esteves Lins;Beatriz Ometto Sahadi;Giovanna Correa Denucci;Gabriela Soffner ;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.32.1-32.11
    • /
    • 2022
  • Objectives: This study aimed to evaluate the influence of inorganic composition and filler particle morphology on the mechanical properties of different self-adhesive resin cements (SARCs). Materials and Methods: Three SARCs including RelyX Unicem-2 (RUN), Maxcem Elite (MAX), and Calibra Universal (CAL) were tested. Rectangular bar-shaped specimens were prepared for flexural strength (FS) and flexural modulus (FM) and determined by a 3-point bending test. The Knoop microhardness (KHN) and top/bottom microhardness ratio (%KHN) were conducted on the top and bottom faces of disc-shaped samples. Sorption (Wsp) and solubility (Wsl) were evaluated after 24 hours of water immersion. Filler morphology was analyzed by scanning electron microscopy and X-ray energy dispersive spectroscopy (EDS). FS, FM, %KHN, Wsp, Wsl, and EDS results were submitted to 1-way analysis of variance and Tukey's post-hoc test, and KHN also to paired t-test (α = 0.05). Results: SARC-CAL presented the highest FS value, and SARC-RUN presented the highest FM. SARC-MAX and RUN showed the lowest Wsp and Wsl values. KHN values decreased from top to bottom and the SARCs did not differ statistically. Also, all resin cements presented carbon, aluminum, and silica in their composition. SARC-MAX and RUN showed irregular and splintered particles while CAL presented small and regular size particles. Conclusions: A higher mechanical strength can be achieved by a reduced spread in grit size and the filler morphology can influence the KHN, as well as photoinitiators in the composition. Wsp and Wsl can be correlated with ions diffusion of inorganic particles.