Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor  

Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.29, no.1, 2019 , pp. 30-36 More about this Journal
Abstract
In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.
Keywords
polymer electrolyte membrane; supercapacitor; conducting polymer; nanofiber; poly(vinyl alcohol);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, and M. Cai, "Nitrogen-doped activated carbon for a high energy hybrid supercapacitor", Energy Environ. Sci., 9, 102-106 (2016).   DOI
2 Y. Li, B. Xu, H. Xu, H. Duan, X. Lu, S. Xin, W. Zhou, L. Xue, G. Fu, and A. Manthiram, "Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries", Angew. Chem., 129, 771-774 (2017).   DOI
3 C. J. Zhang, S. J. Kim, M. Ghidiu, M. Q. Zhao, M. W. Barsoum, V. Nicolosi, and Y. Gogotsi, "Layered orthorhombic $Nb_2O_5@Nb_4C_3T_x$ and $TiO_2@Ti_3C_2T_x$ hierarchical composites for high performance li-ion batteries", Adv. Funct. Mater., 26, 4143-4151 (2016).   DOI
4 M. Acerce, D. Voiry, and M. Chhowalla, "Metallic 1T phase $MoS_2$ nanosheets as supercapacitor electrode materials", Nat. Nanotechnol., 10, 313-318 (2015).   DOI
5 H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, and Z. Tang, "growth of polypyrrole ultrathin films on $mos_2$ monolayers as high performance supercapacitor electrodes", Adv. Mater., 27, 1117-1123 (2015).   DOI
6 H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, and R. S. Ruoff, "Capacitance of carbon-based electrical double-layer capacitors", Nat. Commun., 5, 3317 (2014).   DOI
7 D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang, and D. Zhang, ""Egg-Box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors", ACS nano, 9, 11225-11233 (2015).   DOI
8 M. Wu, P. Ai, M. Tan, B. Jiang, Y. Li, J. Zheng, W. Wu, Z. Li, Q. Zhang, and X. He, "Synthesis of starch-derived mesoporous carbon for electric double layer capacitor", Chem. Eng. J., 245, 166-172 (2014).   DOI
9 C.-C. Hu, C.-W. Wang, K.-H. Chang, and M.-G. Chen, "Anodic composite deposition of $RuO_2$/reduced graphene oxide/carbon nanotube for advanced supercapacitors", Nanotechnology, 26, 274004 (2015).   DOI
10 Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, Y. Tang, L. Zhang, D. Gao, and F. Gao, "High performance asymmetric supercapacitors based on multilayer $mno_2$/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability", Small, 11, 1310-1319 (2015).   DOI
11 W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, and Y. Chen, "Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life", Adv. Funct. Mater., 25, 1063-1073 (2015).   DOI
12 N. Kurra, M. K. Hota, and H. N. Alshareef, "Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering", Nano Energy, 13, 500-508 (2015).   DOI
13 N. Kurra, R. Wang, and H. N. Alshareef, "All conducting polymer electrodes for asymmetric solid-state supercapacitors", J. Mater. Chem. A, 3, 7368-7374 (2015).   DOI
14 X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, and Y. Chen, "A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications", Adv. Funct. Mater., 23, 3353-3360 (2013).   DOI
15 T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, and Y. Li, "Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability", Nano Lett., 14, 2522-2527 (2014).   DOI
16 H. Gao, W. Zhou, K. Park, and J. B. Goodenough, "A sodium ion battery with a low-cost cross-linked gel-polymer electrolyte", Adv. Energy Mater., 6, 1600467 (2016).   DOI
17 M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q.-H. Yang, and Z. Lin, "Novel gel polymer electrolyte for high-performance lithium-sulfur batteries", Nano Energy, 22, 278-289 (2016).   DOI
18 S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (pems) for fuel cells", Membr. J., 26, 1-13 (2016).   DOI
19 M. S. Shin, M. S. Kang, and J. S. Park, "Preparation and characterizations of sulfonated graphene oxide (sgo)/nafion composite membranes for polymer electrolyte fuel cells", Membr. J., 27, 53-59 (2017).   DOI
20 M. S. Shin, D. E. Kim, and J. S. Park, "Preparation and characterizations of poly (arylene ether sulfone)/$sio_2$ composite membranes for polymer electrolyte fuel cell", Membr. J., 27, 182-188 (2017).   DOI
21 D. H. Kim and M. S. Kang, "Development and applications of pore-filled ion-exchange membranes", Membr. J., 28, 307-319 (2018).   DOI
22 D. J. Kim, J. K. Kim, J. H. Lee, H. H. Cho, Y. S. Bae, and J. H. Kim, "Scalable and bendable organized mesoporous TiN films templated by using a dual-functional amphiphilic graft copolymer for solid supercapacitors", J. Mater. Chem. A, 4, 12497 (2016).   DOI
23 B. S. Kim, K. Lee, S. Kang, S. Lee, J. B. Pyo, I.-S. Choi, K. Char, J. H. Park, S. S. Lee, and J. Lee, "2D reentrant auxetic structures of graphene/cnt networks for omnidirectionally stretchable supercapacitors", Nanoscale, 9, 13272-13280 (2017).   DOI
24 K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, "High performance two ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays", Adv. Mater., 25, 1494-1498 (2013).   DOI
25 Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu, and H. Zhu, "Effect of different gel electrolytes on graphene based solid-state supercapacitors", RSC Adv., 00, 1-3 (2014).
26 G. Ma, J. Li, K. Sun, H. Peng, J. Mu, and Z. Lei, "High performance solid-state supercapacitor with $PVA-KOH-K-3[Fe(CN)_6]$ gel polymer as electrolyte and separator", J. Power Sources, 256, 281-287 (2014).   DOI