DOI QR코드

DOI QR Code

Surface Morphology Changes of Lithium/Sulfur Battery using Multi-walled carbon nanotube added Sulfur Electrode during Cyclings

탄소나노튜브가 첨가된 유황전극을 사용한 리튬/유황 전지의 사이클링에 의한 표면형상변화

  • Park, Jin-Woo (School of Materials Science and Engineering, WCUNGB, ERI, Gyeongsang National University) ;
  • Yu, Ji-Hyun (School of Materials Science and Engineering, WCUNGB, ERI, Gyeongsang National University) ;
  • Kim, Ki-Won (School of Materials Science and Engineering, WCUNGB, ERI, Gyeongsang National University) ;
  • Ryu, Ho-Suk (School of Materials Science and Engineering, WCUNGB, ERI, Gyeongsang National University) ;
  • Ahn, Jou-Hyeon (Department of Chemical & Biological Engineering, Gyeongsang National University) ;
  • Jin, Chang-Soo (Energy Storage Research Center, Korea Institute of Energy Research) ;
  • Shin, Kyung-Hee (Energy Storage Research Center, Korea Institute of Energy Research) ;
  • Kim, Young-Chul (Agency for Depense Development) ;
  • Ahn, Hyo-Jun (School of Materials Science and Engineering, WCUNGB, ERI, Gyeongsang National University)
  • 박진우 (경상대학교 나노.신소재공학부, 차세대 이차전지센터) ;
  • 유지현 (경상대학교 나노.신소재공학부, 차세대 이차전지센터) ;
  • 김기원 (경상대학교 나노.신소재공학부, 차세대 이차전지센터) ;
  • 류호석 (경상대학교 나노.신소재공학부, 차세대 이차전지센터) ;
  • 안주현 (경상대학교 생명화학공학과) ;
  • 진창수 (한국에너지기술연구원) ;
  • 신경희 (한국에너지기술연구원) ;
  • 김영철 (국방과학연구소) ;
  • 안효준 (경상대학교 나노.신소재공학부, 차세대 이차전지센터)
  • Received : 2010.07.08
  • Published : 2011.02.25

Abstract

We investigated the surface morphology changes of a lithium/sulfur battery using multi-walled canbon nanotube added sulfur electrode during charge-discharge cycling. The Li/S cell showed the first discharge capacity of 1286 mAh/g-S, which utilized is 71% of the theoretical value. It decreased to 328 mAh/g-S at the 100th cycle, which corresponds to about 19% utilization of the total sulfur in the cathode. The spherical lumps of the reaction product were observed on the surface of the sulfur electrode. This material was verified as lithium sulfide by X-ray diffraction measurement. The pores in the separator were filled with reaction product. Thus the diffusion of the $Li^+$ ion decreased, which resulted in the decreased capacity of the Li/S cell.

Keywords

Acknowledgement

Supported by : 국방과학연구소

References

  1. E. Peled, Y. Sternberg, A. Gorenshtein, and Y. Lavi, J. Electrochem. Soc. 136, 1621 (1989). https://doi.org/10.1149/1.2096981
  2. S. Kim, Y. Jung, and H. S. Lim, Electrochim. Acta 50, 889 (2004). https://doi.org/10.1016/j.electacta.2004.01.093
  3. J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, and Y. Li, Electrochem, Commun. 4, 499 (2002). https://doi.org/10.1016/S1388-2481(02)00358-2
  4. B. Jin, J. U. Kim, and H. B. Gu, J. Power Sources 117, 148 (2003). https://doi.org/10.1016/S0378-7753(03)00113-7
  5. Y. S. Choi, S. Kim, S. S. Choi, J. S. Han, J. D. Kim, S. E. Jeon, and B. H. Jung, Electrochim. Acta 50, 833 (2004). https://doi.org/10.1016/j.electacta.2004.05.048
  6. X. Zhn, Z. Wen, Z. Gu, and Z. Lin, J. Power Sources 139, 269 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.002
  7. H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, K. K. Cho, T. H. Nam, J. U. Kim, and G. B. Cho, J. Power Sources 163, 201 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.061
  8. H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, K. K. Cho, and T. H. Nam, Electrochim. Acta 52, 1563 (2006). https://doi.org/10.1016/j.electacta.2006.01.086
  9. B. H. Jeon, J. H. Yeon, and K. M. Kim, J. Chung, J. Power Sources 109, 89 (2002). https://doi.org/10.1016/S0378-7753(02)00050-2
  10. S. E. Cheon, J. H. Cho, K. S. Ko, C. W. Kwon, D. R. Chang, H. T. Kim, and S. W. Kim, J. Electrochem. Soc. 149, A1437 (2002). https://doi.org/10.1149/1.1511187
  11. Y. M. Lee, N. S. Choi, J. H. Park, and J. K. Park, J. Power Sources 119, 964 (2003).
  12. N. I. Kim, C. B. Lee, J. M. Seo, W. J. Lee, and Y. B. Roh, J. Power Sources 132, 209 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.028
  13. Y. J. Choi, K. K. Kim, H. J. Ahn, and J. H. Ahn, J. Alloys and Compunds 449, 313 (2008). https://doi.org/10.1016/j.jallcom.2006.02.098
  14. J. H. Kim, Y. J. Choi, S. S. Jeong, K. K. Cho, and K. W. Kim, Mater. Sci. Forum 486, 598 (2005).
  15. Y. J. Choi, S. S. Jeong, K. K. Kim, H. J. Ahn, and J. H. Ahn, Mater. Sci. Forum 510, 1082 (2006).
  16. J. Wang, S. Y. Chew, Z. W. Zhao, S. Ashraf, D. Wexler, J. Chen, S. H. Ng, S. L. Chou, and H. K. Liu, CARBON 46, 229 (2008). https://doi.org/10.1016/j.carbon.2007.11.007
  17. Xiulei Ji, Kyu Tae Lee, and Linda F. Nazar, Nature Materials 8, 500 (2009). https://doi.org/10.1038/nmat2460
  18. D. Marmorstein, T. H. Yu, K. A. Striebel, F. R. McLarnon, J. Hou, and E. J. Cairns, J. Power Sources 89, 219 (2000). https://doi.org/10.1016/S0378-7753(00)00432-8
  19. S. C. Han, M. S. S, H. Lee, H. S. Kim, H. J. Ahn, and J. Y. Lee, J. Electrochem. Soc. 150, A889 (2003). https://doi.org/10.1149/1.1576766
  20. H. S. Ryu, S. W. Lee, K. K. Kim, J. H. Ahn, K. K. Cho, G. B. Cho, and H. J. Ahn, Mater. Sci. Forum 534, 1509 (2007).
  21. S. S. Jeong, Y. J. Choi, and K. K. Kim, Mater. Sci. Forum 510, 1106 (2006).
  22. S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, and H. T. Kim, J. Electrochem. Soc. 150, A800 (2003). https://doi.org/10.1149/1.1571533
  23. H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, and J. Y Lee, J. Power Sources 153, 360 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.037
  24. S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, and H. T. Kim, J. Electrochem. Soc. 150, A796 (2003). https://doi.org/10.1149/1.1571532