DOI QR코드

DOI QR Code

ZnO@Ni-Co-S Core-Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors

  • Sui, Yanwei (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Zhang, Man (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Hu, Haihua (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Zhang, Yuanming (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Qi, Jiqiu (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Wei, Fuxiang (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Meng, Qingkun (School of Materials Science and Engineering China University of Mining and Technology) ;
  • He, Yezeng (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Ren, Yaojian (School of Materials Science and Engineering China University of Mining and Technology) ;
  • Sun, Zhi (School of Materials Science and Engineering China University of Mining and Technology)
  • Received : 2018.07.16
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

The interconnected three-dimensional Ni-Co-S nanosheets were successfully deposited on ZnO nanorods by a one-step potentiostatic electrodeposition. The Ni-Co-S nanosheets provide a large electrode/electrolyte interfacial area which has adequate electroactive sites for redox reactions. Electrochemical characterization of the ZnO@Ni-Co-S core-shell nanorods presents high specifc capacitance (1302.5 F/g and 1085 F/g at a current density of 1 A/g and 20 A/g), excellent rate capabilities (83.3% retention at 20 A/g) and great cycling stability (65% retention after 5000 cycles at a current density of 30 A/g). The outstanding electrochemical performance of the as-prepared electrode material also can be ascribed to these reasons that the special structure improved electrical conductivity and allowed the fast diffusion of electrolyte ions.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortiere, B. Daffos and P. Taberna, Science 351, 691 (2016). https://doi.org/10.1126/science.aad3345
  2. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. Van Schalkwijk, Nat. Mater. 4, 366 (2005). https://doi.org/10.1038/nmat1368
  3. S. E. Chun, B. Evanko, X. F. Wang, D. Vonlanthen, X. L. Ji, G. D. Stucky and S. W. Boettcher, Nat. Commun. 6, 7818 (2015). https://doi.org/10.1038/ncomms8818
  4. Q. Zhang, E. Uchaker, S. L. Candelaria and G. Cao, Chem. Soc. Rev. 42, 3127 (2013). https://doi.org/10.1039/c3cs00009e
  5. H. Zhang, X. Yu and P. Braun, Nat. Nanotechnol. 6, 277 (2011). https://doi.org/10.1038/nnano.2011.38
  6. Y. Wang, Y. Song and Y. Xia, Chem. Soc. Rev. 45, 5925 (2016). https://doi.org/10.1039/C5CS00580A
  7. L. R. Hou, Y. Y. Shi, S. Q. Zhu, M. Rehan, G. Pang, X. G. Zhang and C. Z. Yuan, J. Mater. Chem. A 5, 133 (2017). https://doi.org/10.1039/C6TA05788H
  8. H. Chen, M. Q. Wang, Y. A. Yu, H. Liu, S. Y. Lu, S. J. Bao and M. W. Xu, ACS Appl. Mater. Interfaces 9, 35040 (2017). https://doi.org/10.1021/acsami.7b12069
  9. H. Chen, L. Hu, M. Chen, Y. Yan and L. Wu, Adv. Funct. Mater. 24, 934 (2014). https://doi.org/10.1002/adfm.201301747
  10. M. M. Titirici et al., Chem. Soc. Rev. 44, 250 (2015). https://doi.org/10.1039/C4CS00232F
  11. C. Z. Yuan, H. B. Wu, Y. Xie and X. W. Lou, Angew. Chem. Int. Ed. 53, 1488 (2014). https://doi.org/10.1002/anie.201303971
  12. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, Energy Environ. Sci. 9, 102 (2016). https://doi.org/10.1039/C5EE03149D
  13. M.-Q. Zhao, Q. Zhang, J.-Q. Huang and F. Wei, Adv. Funct. Mater. 22, 675 (2012). https://doi.org/10.1002/adfm.201102222
  14. H. Jiang, P. S. Lee and C. Li, Energy Environ. Sci. 6, 41 (2012).
  15. Y. Zhang, C. Sun, H. Su, W. Huang and X. Dong, Nanoscale 7, 3155 (2015). https://doi.org/10.1039/C4NR06286H
  16. J. Liu et al., Adv. Mater. 23, 2075 (2011). https://doi.org/10.1002/adma.201190066
  17. W. M. Du, Z. Y. Wang, Z. Q. Zhu, S. Hu, X. Y. Zhu, Y. F. Shi, H. Pang and X. F. Qian, J. Mater. Chem. A 2, 9613 (2014). https://doi.org/10.1039/C4TA00414K
  18. H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi and H. Wan, J. Power Sources 254, 249 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.092
  19. Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song and X. Ji, J. Power Sources 273, 584 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.144
  20. X. Sun, Q. Li, J. Jiang and Y. Mao, Nanoscale 6, 8769 (2014). https://doi.org/10.1039/C4NR01146E
  21. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, ACS Nano 7, 2617 (2013). https://doi.org/10.1021/nn306044d
  22. G. H. Zhang, S. C. Hou, H. Zhang, W. Zeng, F. L. Yan, C. C. Li and H. G. Duan, Adv. Mater. 27, 2400 (2015). https://doi.org/10.1002/adma.201405222
  23. W. Chen, C. Xia and H. N. Alshareef, ACS Nano 9, 9531 (2014).
  24. V. H. Nguyen, C. Lamiel and J. J. Shim, Electrochim. Acta 161, 351 (2015). https://doi.org/10.1016/j.electacta.2015.01.227
  25. Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang and X. Duan, Nano Res. 6, 65 (2013). https://doi.org/10.1007/s12274-012-0284-4
  26. J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14, 831 (2014). https://doi.org/10.1021/nl404199v
  27. R. Y. Jia, F. Zhu, S. Sun, T. Zhai and H. Xia, J. Power Sources 341, 427 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.014
  28. F. Gao, B. Y. Xu, Q. H. Wang, F. X. Cai, S. Y. He, M. S. Zhang and Q. X. Wang, J. Mater. Sci. 51, 10641 (2016). https://doi.org/10.1007/s10853-016-0286-9
  29. Q. H. Wang, F. Gao, B. Y. Xu, F. X. Cai, F. P. Zhan, F. Gao and Q. X. Wang, Chem. Eng. J. 327, 387 (2017). https://doi.org/10.1016/j.cej.2017.06.124
  30. C. Y. Zhang, X. Y. Cai, Y. Qian, H. F. Jiang, L. J. Zhou, B. S. Li, L. F. Lai, Z. X. Shen and W. Huang, Adv. Sci. (2017) 1700375.
  31. X. L. Zheng, X. Han, X. X. Zhao, J. Qi, Q. X. Ma, K. Tao and L. Han, Mater. Res. Bull. 106, 243 (2018). https://doi.org/10.1016/j.materresbull.2018.06.005
  32. X. Han, K. Tao, D. Wang and L. Han, Nanoscale 10, 2735 (2018). https://doi.org/10.1039/C7NR07931A
  33. K. Tao, X. Han, Q. X. Ma and L. Han, Dalton Trans. 47, 3496 (2018). https://doi.org/10.1039/C7DT04942K
  34. Y. K. Liu, G. H. Jiang, S. Q. Sun, B. Xu, J. Y. Zhou, Y. Zhang and J. M. Yao, J. Alloys Compd. 731, 560 (2018). https://doi.org/10.1016/j.jallcom.2017.10.078
  35. Y. K. Liu, G. H. Jiang, S. Q. Sun, B. Xu, J. Y. Zhou, Y. Zhang and J. M. Yao, J. Electroanal. Chem. 804, 212 (2017). https://doi.org/10.1016/j.jelechem.2017.09.040
  36. Y. K. Liu, Q. L. Lu, Z. Huang, S. Q. Sun, B. Yu, U. Evariste, G. H. Jiang and J. M. Yao, J. Alloys Compd. 762, 301 (2018). https://doi.org/10.1016/j.jallcom.2018.05.239
  37. C. Chen, M.-K. Wu, K. Tao, J.-J. Zhou, Y.-L. Li, X. Han and L. Han, Dalton Trans. 47, 5639 (2018). https://doi.org/10.1039/C8DT00464A
  38. J. R. Miller, R. Outlaw and B. C. Holloway, Science 329, 1637 (2010). https://doi.org/10.1126/science.1194372