DOI QR코드

DOI QR Code

Global Fitting Functions for Kinetics of Fe-Selective Chlorination in Ilmenite and Successive Chlorination of Beneficiated TiO2

일메나이트 중 철의 선택적 염화와 선광된 TiO2의 추가 염화반응에 대한 글로벌 피팅함수

  • Chung, Dong-Kyu (Clean Manufacturing Technology Research Center, Pukyong National University) ;
  • Won, Yong Sun (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Yong-Ha (Department of Chemical Engineering, Pukyong National University) ;
  • Jung, Eun-Jin (Metallic Materials Research Group, Research Institute of Industrial Science & Technology) ;
  • Song, Duk-Yong (Korea Metal Material Research Association)
  • 정동규 (부경대학교 청정생산기술연구소) ;
  • 원용선 (부경대학교 화학공학과) ;
  • 김용하 (부경대학교 화학공학과) ;
  • 정은진 (포항산업과학연구원 금속재료연구그룹) ;
  • 송덕용 (한국금속재료연구조합)
  • Received : 2019.05.26
  • Accepted : 2019.06.26
  • Published : 2019.07.27

Abstract

Global fitting functions for Fe-selective chlorination in ilmenite($FeTiO_2$) and successive chlorination of beneficiated $TiO_2$ are proposed and validated based on a comparison with experimental data collected from the literature. The Fe-selective chlorination reaction is expressed by the unreacted shrinking core model, which covers the diffusion-controlling step of chlorinated Fe gas that escapes through porous materials of beneficiated $TiO_2$ formed by Fe-selective chlorination, and the chemical reaction-controlling step of the surface reaction of unreacted solid ilmenite. The fitting function is applied for both chemical controlling steps of the unreacted shrinking core model. The validation shows that our fitting function is quite effective to fit with experimental data by minimum and maximum values of determination coefficients of $R^2$ as low as 0.9698 and 0.9988, respectively, for operating parameters such as temperature, $Cl_2$ pressure, carbon ratio and particle size that change comprehensively. The global fitting functions proposed in this study are expressed simply as exponential functions of chlorination rate(X) vs. time(t), and each of them are validated by a single equation for various reaction conditions. There is therefore a certain practical merit for the optimal process design and performance analysis for field engineers of chlorination reactions of ilmenite and $TiO_2$.

Keywords

References

  1. H. M. Harris, A. W. Henderson and T. T. Campbell, U. S. Bureau of Mines Report of Investigations, No. 8165, 19 (1976).
  2. A. R. Chughtai, H. M. Harris and J. R. Riter, Metall. Mater. Trans. B, 8, 507 (1977). https://doi.org/10.1007/BF02696938
  3. L. Niu, T. Zhang, P. Ni, G. LU and K. Ouyang, Trans. Nonferrous Met. Soc. China, 23, 3348 (2013).
  4. A. J. Morris, and R. F. Jensen, Metall. Mater. Trans. B, 7, 89 (1976). https://doi.org/10.1007/BF02652823
  5. A. Luckos and P. Hoed, Ind. Eng. Chem. Res., 43, 5645 (2004). https://doi.org/10.1021/ie030776j
  6. L. S. Lasdon, R. L. Fox and M. Ratner, Oper. Res., 8, 73 (1974).
  7. D. Kunii and O. Levenspiel, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, 337 (1991).
  8. S. Homma, S. Ogata, J. Koga and S. Matsumoto, Chem. Eng. Sci., 60, 4971 (2005). https://doi.org/10.1016/j.ces.2005.03.057
  9. K. I. Rhee and H. Y. Sohn, Metall. Mater. Trans. B, 21, 321 (1990).
  10. G. G. Fouga, D. M. Pasquevich and A. E. Bohe, Trans. Inst. Min. Metall. C, 116, 230 (2007).
  11. J. S. J. Van Deventer, Thermochim. Acta, 124, 205 (1988). https://doi.org/10.1016/0040-6031(88)87023-0
  12. V. G. Neurgaonkar, A. N. Gorkan and K. Joseph, J. Chem. Tech. Biotechnol., 36, 27 (1986).
  13. A. Fuwa, E. Kimura and S. Fukushima, Metall. Mater. Trans. B, 9, 643 (1978).
  14. H. Y. Sohn and L. Zhou, Chem. Eng. J., 72, 37 (1999). https://doi.org/10.1016/S1385-8947(98)00139-9
  15. H. Y. Sohn and L. Zhou, Can. J. Chem. Eng., 76, 1078 (1998). https://doi.org/10.1002/cjce.5450760614