• 제목/요약/키워드: Carbon Upcycling

검색결과 10건 처리시간 0.02초

기술 및 시장을 고려한 최적 탄소자원화 기술 선정방법 (Optimal Carbon Upcycling Technology Selection Method Considering Technology and Market)

  • 이지현;제갈성;조지은
    • 신재생에너지
    • /
    • 제19권1호
    • /
    • pp.41-52
    • /
    • 2023
  • Various carbon upcycling technologies have been proposed and are under development to achieve Korea's carbon neutrality target. Many chemical reactions are under development through various chemical reaction pathways, and different technological maturity levels are shown for each country and company. In this situation, it is essential to establish investment decisions such as research funds and human resources allocation through technological and economic analysis for close commercialization technologies and basic technologies with low technology readiness levels (TRL). Therefore, in this study, the technology development priority for developing carbon upcycling items was selected according to the domestic Carbon Capture & Utilization (CCU) technology roadmap using the stakeholder selection tool released by EU CarbonNext. As a result of the analysis, the TRL level of Korea's major carbon upcycling technologies was analyzed to be lower than that of other carbon resource technologies, and it was considered desirable to invest in mineral carbonization technologies among various candidate technologies.

활성탄 담지 몰리브덴 촉매를 이용한 합성가스 직접 메탄화 반응 (Direct Methanation of Syngas over Activated Charcoal Supported Molybdenum Catalyst)

  • 김성수;이승재;박성열;김진걸
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.419-428
    • /
    • 2020
  • The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.

재료 및 기법의 특성에 기반하는 업사이클 패션 디자인 연구 (A Study on Upcycle Fashion Design Based on the Characteristics of Materials and Techniques)

  • 유해민;전재훈
    • 한국의류학회지
    • /
    • 제44권5호
    • /
    • pp.984-1003
    • /
    • 2020
  • The global fashion industry produces significant carbon emission and micro-plastics in oceans. Studies on sustainable design methods as such environmental issues in fashion are becoming intensely problematic. This study conducted a case study on 100 upcycle fashion brands to propose strategical upcycle fashion designs to compete in a sustainable fashion market. A literature review indicated that 3 types of textile wastes are generated as upcycling materials: post-producer, pre-consumer and post-consumer. Wastes are categorized together with 3 types of techniques: redesigning, reconstruction and handcrafting. This research derived 7 types of upcycle fashion designs that have the following features: to make luxury upcycle fashion products, to make sustainable grunge looks, to re-evaluate deadstocks, to recover vintage clothes, to convert waste into craft-arts, to offer solutions for damaged products, and to make zero-waste small fabric waste. The study results show that key drivers in the upcycle fashion design are the redesignability of materials and technique-related costs. This study implies that adopting appropriate design features can be a useful strategy for designers. New technologies will solve current problems and encourage them to design products in a new circular value system.

저급 폐유지의 바이오디젤 원료 활용을 위한 중화탈산 및 FAME 전환 가능성 평가 (Evaluation of Neutralization and FAME Conversion of Low-grade Waste Oil as Biodiesel Feedstock)

  • 이준표;이진석;박지연;김민철;조재완;김덕근
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.2-10
    • /
    • 2023
  • The current mandatory domestic biodiesel blending ratio is 3.5%, which is planned to be gradually increased to achieve carbon neutrality by 2050. The aim of this study was to improve domestic self-sufficiency in biodiesel raw oil by conducting a technical review on the possibility of utilizing waste oils, such as soup oil, chicken oil, and leather oil, as biodiesel feedstocks. These waste oils have an acid value that is too high to be converted directly into biodiesel. Therefore, a pretreatment to reduce the acid value is necessary. The neutralization process was examined as a potential technology for reducing the acid value. The oil recovery rate of the soup oil after neutralization was significantly low at 37.6 wt%. The oil recovery rates of leather oil and chicken oil were 66.49 wt% and 79.08 wt%, respectively. Based on biodiesel conversion experiment using waste oil with a reduced acid value, the conversions were analyzed as 89 wt%, 91.1 wt%, and 90.5 wt% for soup oil, leather oil, and chicken oil, respectively. Thus, it is technically possible to use soup oil, leather oil, and chicken oil as raw materials for producing biodiesel.

탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응 (Carbon-Encapsulated Ni Catalysts for CO2 Methanation)

  • 김혜정;김승보;김동현;윤재랑;김민재;전상구;이경자;이규복
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

CO2 고부가화를 위한 로도박터 스페로이데스를 활용한 미생물 전기합성 최적화 연구 (Optimization of Microbial Electrosynthesis Using Rhodobacter sphaeroides for CO2 Upcycling)

  • 김희수;정휘종;김단비;이상민;이지예;이진석;문명훈;고창현;이수연
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.20-26
    • /
    • 2023
  • Emitted CO2 is an attractive material for microbial electrochemical CO2 reduction. Microbial electrochemical CO2 reduction (i.e., microbial electrosynthesis, MES) using biocatalysts has advantages compared to conventional CO2 reduction using electrocatalysts. However, MES has several challenges, including electrode performance, biocatalysts, and reactor optimization. In this study, an MES system was investigated for optimizing reactor types, counter electrode materials, and CO2-converting microorganisms to achieve effective CO2 upcycling. In autotrophic cultivation (supplementation of CO2 and H2), CO2 consumption of Rhodobacter sphaeroides was observed to be four times higher than that with heterotrophic cultivation (supplementation of succinic acid). The bacterial growth in an MES reactor with a single-chambered shape was two times higher than that with a double chamber (H-type MES reactor). Moreover, a single-chambered MES reactor equipped with titanium mesh as the counter electrode (anode) showed markedly increased current density in the graphite felt as a working electrode (cathode) compared to that with a graphite felt counter electrode (anode). These results demonstrate that the optimized conditions of a single chamber and titanium mesh for the counter electrode have a positive effect on microbial electrochemical CO2 reduction.

가압을 통한 도시형 생활 폐기물 기반 합성가스발효 공정 개발 (Municipal Solid Waste-derived Syngas Fermentation Process by Pressurization)

  • 신수빈;고재희;문명훈;김민식;이문규;장인섭;손성수;박권우
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.35-45
    • /
    • 2023
  • Global efforts are focused on achieving carbon neutrality due to the increases in the levels of greenhouse gases. Moreover, the greenhouse gases generated from the disposal of municipal solid waste (MSW) are the primary sources of emissions in South Korea. In this study, we conducted the biological conversion of syngas (CO, H2, and CO2) generated from MSW gasification. The MSW-derived syngas was used as a feed source for cultivating Eubacterium limosum KIST612, and pressurization was employed to enhance gas solubility in culture broth. However, the pH of the medium decreased owing to the pressurization because of the CO2 in the syngas and the cultivation-associated organic acid production. The replacement of conventional HEPES buffer with a phosphate buffer led to an approximately 2.5-fold increase in acetic acid concentration. Furthermore, compared with the control group, the pressurized reactor exhibited a maximum 8.28-fold increase in the CO consumption rate and a 3.8-fold increase in the H2 consumption rate.

수산부산물의 발생·이용 실태 평가 및 해양바이오 산업화 방안 (Current Status and Evaluation of Fisheries By-products: Major Options to Marine Bioindustrial Application)

  • 안소언;이원규;장덕희;강도형
    • Ocean and Polar Research
    • /
    • 제43권3호
    • /
    • pp.149-164
    • /
    • 2021
  • Since the existing mass production and consumption systems are no longer sustainable, countries are pushing for policies to make fisheries by-products as resources in an eco-friendly manner, and international standards are also being strengthened to increase the value of by-products. In Korea, economic and environmental perceptions of the by-products are rapidly changing, such as realizing carbon neutrality and enhancing circular resources by Korean Sustainable Development Goals. Raw materials derived from the by-products have been steadily imported from 2018. In particular, the number of imports of fish collagen peptides was only 16 number of times in 2017, but was rapidly increased to 483 number of times in 2020. Simultaneously, the demand for raw materials and nutrients for health functional food derived from fish by-products, which did not exist statistically until 2017, started to arise from 2018, and in 2019, consumption of high-value-added raw materials for fish by-products increased by 45% compared to the previous year. However, limitations are in legal and biotechnical industry aspects while its value as a biomaterial is recognized in the by-products-related industry. In this study, therefore, the status of by-products for upcycling biomaterials was reported and provided a scientific basis for supporting governmental strategies. In order to fulfill with the principles of a sustainable circular economy, the factors on hinder the marine bio-industrialization of the by-products were derived and suggested directions and plans for development into a high-value added the by-products as the marine bio-industry by substituting imported raw materials to support the development.

메탄가스 전환 미생물촉매 개량을 위한 플라스미드 복제 시작점 예측 (Predicting Plasmid Replication Origin for Methane-converting Microbial Catalyst Improvement)

  • 김민식
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.46-52
    • /
    • 2023
  • Methane is the second most emitted greenhouse gas after carbon dioxide. Despite lower emissions than those of carbon dioxide, methane receives significant attention owing to its more than 20-fold higher global warming potential. Consequently, the importance of research on methanotrophic bacteria, microorganisms capable of converting methane gas into high-value materials, is increasingly emphasized. In the case of methanotrophic bacteria, knowledge on episomal plasmids that can be used for genetic engineering remains lacking, which poses significant challenges to the engineering process. The replication origin sequences of natural plasmids within methanotrophic bacteria have been predicted through in silico methods. The basic characteristics of the replication origin, such as a high A/T ratio, repetitive sequences, and proximity to proteins related to replication, have been used as criteria for identifying the replication origin. As a result, a region with a sequence of 18 base pairs repeated eight times could be identified. The putative replication origin sequence thus identified generally takes the form of iterons, but it also possesses unique features such as the length of the gap between iterons and the repetition of identical iteron sequences. This information can be valuable for future design of episomal plasmids applicable to methanotrophs.

수소 및 탄소소재 생산을 위한 메탄 유동층 촉매분해 기술의 최근 동향 (Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production)

  • 배건;고강석;김우현;이도연
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.175-188
    • /
    • 2023
  • 화석연료를 대체할 수 있는 친환경 미래 에너지로 수소에너지에 대한 전세계적 관심이 높아지고 있다. 이에 따라 미생물, 원자력 등을 이용한 차세대 수소 생산 기술이 개발되고 있으나, 화석연료 기반의 수소 생산 비용을 뛰어 넘기에는 아직 많은 시간과 노력이 필요한 상황이다. 화석연료 기반의 수소 생산 과정에서 온실가스의 배출량을 최소화 할 수 있는 방안으로 메탄 직접분해 반응 기술이 최근 관심을 모으고 있다. 공정의 경제성 향상을 위해서 수소 생산과 동시에 생산된 탄소물질의 고부가화 대한 연구가 필수적이며, 고부가 탄소 물질 중 하나인 탄소나노튜브(Carbon nanotube, CNT)의 품질 및 수율 등과 관련한 촉매반응 연구가 지속되어 왔다. 또한 공정기술 측면에서, 연속적인 생산이 가능하며 기체-고체 접촉 효율이 좋은 유동층 공정을 적용시켜 생산성과 경제성을 확보하고자 하는 연구가 시도되었다. 최근 유동층을 이용한 메탄 직접분해 반응기술은 수소 270 kg/day, 탄소 1000 kg/day의 생산이 가능한 정도의 기술 개발이 진행되었으며, 향후 촉매 재활성화, 분리 및 재순환 기술 등이 개발되면 공정의 효율이 크게 제고될 것이다. 이에 본 총설에서는 메탄 직접 분해에 활용되는 촉매 및 유동층 메탄 열분해 기술의 최근 연구들을 고찰하였다.