DOI QR코드

DOI QR Code

CO2 고부가화를 위한 로도박터 스페로이데스를 활용한 미생물 전기합성 최적화 연구

Optimization of Microbial Electrosynthesis Using Rhodobacter sphaeroides for CO2 Upcycling

  • Hui Su Kim (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Hwi Jong Jung (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Danbee Kim (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Samgmin Lee (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Jiye Lee (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Jin-Suk Lee (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Myounghoon Moon (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Chang Hyun Ko (Department of Chemical Engineering, Chonnam National University) ;
  • Soo Youn Lee (Gwangju Clean Energy Research Center, Korea Institute of Energy Research)
  • 투고 : 2023.11.01
  • 심사 : 2023.12.04
  • 발행 : 2023.12.25

초록

Emitted CO2 is an attractive material for microbial electrochemical CO2 reduction. Microbial electrochemical CO2 reduction (i.e., microbial electrosynthesis, MES) using biocatalysts has advantages compared to conventional CO2 reduction using electrocatalysts. However, MES has several challenges, including electrode performance, biocatalysts, and reactor optimization. In this study, an MES system was investigated for optimizing reactor types, counter electrode materials, and CO2-converting microorganisms to achieve effective CO2 upcycling. In autotrophic cultivation (supplementation of CO2 and H2), CO2 consumption of Rhodobacter sphaeroides was observed to be four times higher than that with heterotrophic cultivation (supplementation of succinic acid). The bacterial growth in an MES reactor with a single-chambered shape was two times higher than that with a double chamber (H-type MES reactor). Moreover, a single-chambered MES reactor equipped with titanium mesh as the counter electrode (anode) showed markedly increased current density in the graphite felt as a working electrode (cathode) compared to that with a graphite felt counter electrode (anode). These results demonstrate that the optimized conditions of a single chamber and titanium mesh for the counter electrode have a positive effect on microbial electrochemical CO2 reduction.

키워드

과제정보

본 연구는 과학기술정보통신부 미생물제어 및 응용 원천기술 개발사업(2022M3A9F3082335), 연구개발특구진흥재단 지역현안해결형 R&BD 지원사업(2021-DD-RD-0033-03-202) 및 환경산업기술원 야생생물 유래 친환경 신소재 및 공정 기술 개발사업(MOE 2021003240005)의 일환으로 수행되었습니다.

참고문헌

  1. Yoro, K.O., and Daramola, M.O., 2020, "Chapter 1-CO2 emission sources, greenhouse gases, and the global warming effect", Advances in carbon capture, Woodhead Publishing, UK, 3-28.
  2. Al-Omari, A.A., Yamani, Z.H., and Nguyen, H.L., 2018, "Electrocatalytic CO2 reduction: from homogeneous catalysts to heterogeneous-based reticular chemistry", Molecules, 23(11), 2835.
  3. Zhang, X., Zhang, Z., Li, H., Gao, R., Xiao, M., Zhu, J., Feng, M., and Chen, Z., 2022, "Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide", Advanced Energy Materials, 12(39), 2201461.
  4. Rojas, M.D.P.A., Zaiat, M., Gonzalez, E.R., De Wever, H., and Pant, D., 2018, "Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate", Bioresour. Technol., 266, 203-210. https://doi.org/10.1016/j.biortech.2018.06.074
  5. Nevin, K.P., Hensley, S.A., Franks, A.E., Summers, Z.M., Ou, J., Woodard, T.L., Snoeyenbos West, O.L., and Lovley, D.R., 2011, "Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms", Appl. Environ. Microbiol., 77(9), 2882-2886. https://doi.org/10.1128/AEM.02642-10
  6. Mayer, F., Enzmann, F., Lopez, A.M., and Holtmann, D., 2019, "Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide", Bioresour. Technol., 289, 121706.
  7. Lee, S.Y., Oh, Y.K., Lee, S., Fitriana, H.N., Moon, M., Kim, M.S. Lee, J., Min, K., Park, G.W., Lee, J.P., and Lee, J.S., 2021, "Recent developments and key barriers to microbial CO2 electrobiorefinery", Bioresour. Technol., 320(Part A), 124350.
  8. Mock, J., Zheng, Y., Mueller, A.P., Ly, S., Tran, L., Segovia, S., Nagaraju, S., Kopke, M., Durre, P., and Thauer, R.K., 2015, "Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation", J. Bacteriol, 197(18), 2965-2980. https://doi.org/10.1128/JB.00399-15
  9. Li, S., Kim, M., Kong, D.S., Min, K., Wu, G., Cui, M., Kim, C., Oh, Y.K., Kim, S., and Lee, S.Y., et al., 2023, "Electron uptake from solid electrodes promotes the more efficient conversion of CO2 to polyhydroxybutyrate by using Rhodobacter sphaeroides", J. Chem. Eng., 469, 143785.
  10. Lee, Y.R., Lee, S.Y., Lee, J., Kim, H.S., Lee, J.S., Lee, W.H., and Lee, S., 2022, "Modulation of antioxidant activity enhances photoautotrophic cell growth of Rhodobacter sphaeroides in microbial electrosynthesis", Energies, 15(3), 935.
  11. Orsi, E., Beekwilder, J., Eggink, G., Kengen, S.W.M., and Weusthuis, R.A., 2021, "The transition of Rhodobacter sphaeroides into a microbial cell factory", Biotechnology and Bioengineering, 118(2), 531-541. https://doi.org/10.1002/bit.27593
  12. Dessi, P., Rovira-Alsina, L., Sanchez, C., Dinesh, G.K., Tong, W., Chatterjee, P., Tedesco, M., Farras, P., Hamelers, H.M.V., and Puig, S., 2021, "Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions", Biotechnol. Adv., 46, 107675.
  13. Fitriana, H.N., Lee, J., Lee, S., Moon, M., Lee, Y.R., Oh, Y.K., Park, M., Lee, J.S., Song, J., and Lee, S.Y., 2021, "Surface modification of a graphite felt cathode with amide-coupling enhances the electron uptake of Rhodobacter sphaeroides", Appl. Sci., 11(16), 7585.
  14. Liu, Z., Xue, X., Cai, W., Cui, K., Patil, S. A., and Guo, K., 2023, "Recent progress on microbial electrosynthesis reactor designs and strategies to enhance the reactor performance", Biochem. Eng. J., 190, 108745.
  15. Saravanan, N., and Karthikeyan, M., 2018 ,"Study of single chamber and double chamber efficiency and losses of wastewater treatment", International Research Jounal of Engineering and Technolohy, 5(3), 1225-1230.
  16. Wang, H., Du, H., Zeng, S., Pan, X., Cheng, H., Liu, L., and Luo, F., 2021, "Explore the difference between the single-chamber and dual-chamber microbial electrosynthesis for biogas production performance", Bioelectrochemistry, 138, 107726.