Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.5.419

Direct Methanation of Syngas over Activated Charcoal Supported Molybdenum Catalyst  

KIM, SEONG-SOO (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research)
LEE, SEUNG-JAE (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research)
PARK, SUNG-YOUL (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research)
KIM, JIN-GUL (Department of Nano Chemical Engineering, Soonchunhyang University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.5, 2020 , pp. 419-428 More about this Journal
Abstract
The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.
Keywords
Direct methanation; Activated charcoal-supported molybdenum catalyst; Metal dusting; Nanoparticle; Carbon deposit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kopyscinski, T. J. Schildhauer, and S. M. A. Biollaz, "Production of synthetic natural gas (SNG) from coal and dry biomass - a technology review from 1950 to 2009", Fuel, Vol. 89, No. 8, 2010, pp. 1763-1783, doi: https://doi.org/10.1016/j.fuel.2010.01.027.   DOI
2 S. H. Kim and D. J Koh, "SNG manufacturing technology", NICE, Vol. 31, No. 1, 2013, pp. 65-68. Retrieved from https://www.cheric.org/PDF/NICE/NI31/NI31-1-0065.pdf.
3 S. S. Kim, D. H. Shin, and J. G. Kim, "Direct methanation catalyst for synthetic gas and method for preparing same", EU Patent, EP 2792409 A1, 2020. Retrieved from https://patents.google.com/patent/EP2792409A1/en.
4 M. Y. Kim, S. B. Ha, D. J. Koh, C. Byun, and E. D. Park, "CO methanation over supported Mo catalysts in the presence of $H_2S$", Catalyst Communications, Vol. 35, 2013, pp. 68-71, doi: https://doi.org/10.1016/j.catcom.2013.02.004.   DOI
5 J. M. Choi, S. H. Kim, S. J. Lee, and S. S. Kim, "Effects of pressure and temperature in hydrothermal preparation of $MoS_2$ catalyst for methanation reaction", Catal. Lett., Vol. 148, 2018, pp. 1803-1814, doi: https://doi.org/10.1007/s10562-018-2372-x.   DOI
6 J. M. Kim, S. H. Kim, S. Y. Park, S. S. Kim, and S. J. Lee, "Effects of preparation conditions on the CO methanation performance of Co-Mo carbide catalysts", Chem. Eng. Sci., Vol. 209, 2019, pp. 115219, doi: https://doi.org/10.1016/j.ces.2019.115219.   DOI
7 F. Wang, J. C. Zhang, Z. Q. Chen, J. D. Lin, W. Z. Li, Y. Wang, and B. H. Chen, "Water-saving dry methanation for direct conversion of syngas to synthetic natural gas over robust $Ni_{0.1}Mg_{0.9}Al_2O_4$ catalyst", J. Catal., Vol. 375, 2019, pp. 466-477, doi: https://doi.org/10.1016/j.jcat.2019.06.021.   DOI
8 F. Wang, J. C. Zhang, W. Z. Li, and B. H. Chen, "Coke-resistant Au-Ni/$MgAl_2O_4$ catalyst for direct methanation of syngas", J. Energy Chem., Vol. 39, 2019, pp. 198-207, doi: https://doi.org/10.1016/j.jechem.2019.03.028.   DOI
9 C. K. Poh, S. W. D. Ong, Y. H. Du, H. Kamata, K. S. C. Choong, J. Chang, Y. Izumi, K. Nariai, N. Mizukami, L. W. Chen, and A. Borgana, "Direct methanation with supported $MoS_2$ nano-flakes: relationship between structure and activity", Catal. Today, Vol. 342, 2020, pp. 21-31, doi: https://doi.org/10.1016/j.cattod.2019.04.050.   DOI
10 P. I. Ravikovitch and A. V. Neimark, "Characterization of nanoporous materials from adsorption and desorption isotherms", Colloid. Surface. A., Vol. 187-188, 2001, pp. 11-21, doi: https://doi.org/10.1016/s0927-7757(01)00614-8.   DOI
11 J. G. Choi and L. T. Thompson, "XPS study of as-prepared and reduced molybdenum oxides", Appl. Surf. Sci., Vol. 93, No. 2, 1996, pp. 143-149, doi: https://doi.org/10.1016/0169-4332(95)00317-7.   DOI
12 R. Guil-Lopez, E. Nieto, J. A. Botas, and J. L. G. Fierro, "On the genesis of molybdenum carbide phases during reductioncarburization reactions", J. Solid State Chem., Vol. 190, 2012, pp. 285-295, doi: https://doi.org/10.1016/j.jssc.2012.02.021.   DOI
13 J. Zou, M. Xiang, B. Hou, D. Wu, and Y. Sun, "Single-step thermal carburization synthesis of supported molybdenum carbides from molybdenum-containing methyl-silica", J. Nat. Gas Chem., Vol. 20, No. 3, 2011, pp. 271-280, doi: https://doi.org/10.1016/s1003-9953(10)60178-8.   DOI
14 M. Xiang, D. Wu, J. Zou, D. Li, Y. Sun, and X. She, "Catalytic performance of fe modified K/Mo2C catalyst for CO hydrogenation", J. Nat. Gas Chem., Vol. 20, No. 5, 2011, pp. 520-524, doi: https://doi.org/10.1016/s1003-9953(10)60215-0.   DOI
15 M. Xiang, D. Li, J. Zou, W. Li, Y. Sun, and X. She, "XPS study of potassium-promoted molybdenum carbides for mixed alcohols synthesis via CO hydrogenation", J. Nat. Gas Chem., Vol. 19, No. 2, 2010, pp. 151-155, doi: https://doi.org/10.1016/s1003-9953(09)60051-7.   DOI
16 W. F. McClune, "Powder diffraction file", International Centre for Diffraction Data, Newtown Square, USA, 1983.
17 H. Ghorbani, A. M. Rashidi, S. Rastegari, S. Mirdamadi, and M. Alaei, "Mass production of multi-wall carbon nanotubes by metal dusting process with high yield", Mater. Res. Bull., Vol. 46, No. 5, 2011, pp. 716-721, doi: https://doi.org/10.1016/j.materresbull.2011.01.021.   DOI
18 Y. Xu, X. Bao, and L. Lin, "Direct conversion of methane under nonoxidative conditions", J. Catal., Vol. 216, No. 1-2, 2003, pp. 386-395, doi: https://doi.org/10.1016/s0021-9517(02)00124-0.   DOI
19 G. W. Han, D. Feng, and B. Deng, "Metal dusting and coking of alloy 803", Corros. Sci., Vol. 46, No. 2, 2004, pp. 443-452, doi: https://doi.org/10.1016/s0010-938x(03)00147-1.   DOI
20 C. Y. Lin and W. T. Tsai, "Nano-sized carbon filament formation during metal dusting of stainless steel", Mater. Chem. Phys., Vol. 82, No. 3, 2003, pp. 929-936, doi: https://doi.org/10.1016/j.matchemphys.2003.08.019.   DOI
21 P. V. D. S. Gunawardana, J. Walmsley, A. Holmen, D. Chen, and H. J. Venvik, "Metal dusting corrosion initiation in conversion of natural gas to synthesis gas", Energy Procedia, Vol. 26, 2012, pp. 125-134, doi: https://doi.org/10.1016/j.egypro.2012.06.018.   DOI
22 C. M. Chun, G. Bhargava, and T. A. Ramanarayanan, "Metal dusting corrosion of nickel-based alloys", J. Electrochem. Soc., Vol. 154, No. 5, 2007, pp. C231-C240, doi: https://doi.org/10.1149/1.2710215.   DOI
23 H. J. Grabke, "Metal dusting", Materials and Corrosion, Vol. 54, No. 10, 2003, pp. 736-746, doi: https://doi.org/10.1002/maco.200303729.   DOI
24 Z. Zeng and K. Natesan, "Relationship of carbon crystallization to the metal-dusting mechanism of nickel", Chem. Mater., Vol. 15, No. 4, 2003, pp. 872-878, doi: https://doi.org/10.1021/cm020807l.   DOI
25 J. Z. Albertsen, O. Grong, J. C. Walmsley, R. H. Mathiesen, and W. V. Beek, "A model for high-temperature pitting corrosion in nickel-based alloys involving internal precipitation of carbides, oxides, and graphite", Metall. Mater. Trans. A, Vol. 39, 2008, pp. 1258-1276, doi: https://doi.org/10.1007/s11661-008-9494-5.   DOI
26 R. T. Yang and J. P. Chen, "Mechanism of carbon filament growth on metal catalysts", J. Catal., Vol. 115, No. 1, 1989, pp. 52-64, doi: https://doi.org/10.1016/0021-9517(89)90006-7.   DOI
27 F. R. Feret, "Determination of the crystallinity of calcined and graphitic cokes by X-ray dffraction", Analyst, Vol. 123, 1998, pp. 595-600, doi: https://doi.org/10.1039/a707845e.   DOI
28 G. G Tibbetts, "Carbon filaments and nanotubes : common origins, differing applications?", NATO Science Series, Series E, 2000, pp. 63-73, doi: https://doi.org/10.1007/978-94-010-0777-1.
29 P. Morgan, "Carbon fibers and their composites" Taylor & Francis, 2005, pp. 325-346, doi: https://doi.org/10.1201/9781420028744.