• 제목/요약/키워드: Cantor set

검색결과 47건 처리시간 0.019초

SIMPLE APPROACH TO MULTIFRACTAL SPECTRUM OF A SELF-SIMILAR CANTOR SET

  • BAEK, IN-Soo
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.695-702
    • /
    • 2005
  • We study the transformed measures with respect to the real parameters of a self-similar measure on a self-similar Can­tor set to give a simple proof for some result of its multifractal spectrum. A transformed measure with respect to a real parameter of a self-similar measure on a self-similar Cantor set is also a self­similar measure on the self-similar Cantor set and it gives a better information for multifractals than the original self-similar measure. A transformed measure with respect to an optimal parameter deter­mines Hausdorff and packing dimensions of a set of the points which has same local dimension for a self-similar measure. We compute the values of the transformed measures with respect to the real parameters for a set of the points which has same local dimension for a self-similar measure. Finally we investigate the magnitude of the local dimensions of a self-similar measure and give some correlation between the local dimensions.

CHARACTERISTIC MULTIFRACTAL IN A SELF-SIMILAR CANTOR SET

  • Baek, In Soo
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.157-163
    • /
    • 2008
  • We study essentially disjoint one dimensionally indexed classes whose members are distribution sets of a self-similar Cantor set. The Hausdorff dimension of the union of distribution sets in a same class does not increases the Hausdorff dimension of the characteristic distribution set in the class. Further we study the Hausdorff dimension of some uncountable union of distribution sets.

  • PDF

NON-DIFFERENTIABLE POINTS OF A SELF-SIMILAR CANTOR FUNCTION

  • Baek, In-Soo;Kim, Young-Ha
    • East Asian mathematical journal
    • /
    • 제19권2호
    • /
    • pp.213-219
    • /
    • 2003
  • We study the properties of non-diffenrentiable points of a self-similar Cantor function from which we conjecture a generalization of Darst's result that the Hausdorff dimension of the non-diffenrentiable points of the Cantor function is $(\frac{ln\;2}{ln\;3})^2$.

  • PDF

CORRELATION DIMENSIONS OF CANTOR SETS WITH OVERLPS

  • Lee, Mi-Ryeong
    • 대한수학회논문집
    • /
    • 제16권1호
    • /
    • pp.95-102
    • /
    • 2001
  • We consider a Cantor set with overlaps Λ in R$^1$. We calculate its correlation dimension with respect to the push-down measure on Λ comparing with its similarity dimension.

  • PDF

DIMENSIONS OF THE SUBSETS IN THE SPECTRAL CLASSES OF A SELF-SIMILAR CANTOR SET

  • Baek, In-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.733-738
    • /
    • 2008
  • Using an information of dimensions of divergence points, we give full information of dimensions of the completely decomposed class of the lower(upper) distribution sets of a self-similar Cantor set. Further using a relationship between the distribution sets and the subsets generated by the lower(upper) local dimensions of a self-similar measure, we give full information of dimensions of the subsets by the local dimensions.

  • PDF

ANOTHER COMPLETE DECOMPOSITION OF A SELF-SIMILAR CANTOR SET

  • Baek, In Soo
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.157-163
    • /
    • 2008
  • Using informations of subsets of divergence points and the relation between members of spectral classes, we give another complete decomposition of spectral classes generated by lower(upper) local dimensions of a self-similar measure on a self-similar Cantor set with full information of their dimensions. We note that it is a complete refinement of the earlier complete decomposition of the spectral classes. Further we study the packing dimension of some uncountable union of distribution sets.

  • PDF

Mutifractal Analysis of Perturbed Cantor Sets

  • Baek, Hun Ki;Lee, Hung Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.503-510
    • /
    • 2005
  • Let $\left{K_{\alpha}\right}_{{\alpha}{\in}{\mathbb{R}}}$ be the multifractal spectrums of a perturbed Cantor set K. We find the set of values ${\alpha}$ of nonempty set $K_{\alpha}$ by using the Birkhoff ergodic theorem. And we also show that such $K_{\alpha}$ is a fractal set in the sense of Taylor [12].

  • PDF