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DIMENSIONS OF THE SUBSETS IN THE SPECTRAL
CLASSES OF A SELF-SIMILAR CANTOR SET

IN SOO BAEK

ABSTRACT. Using an information of dimensions of divergence points, we
give full information of dimensions of the completely decomposed class of
the lower (upper) distribution sets of a self-similar Cantor set. Further using

a relationship between the distribution sets and the subsets generated by
the lower(upper) local dimensions of a self-similar measure, we give full
information of dimensions of the subsets by the local dimensions.
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1. Introduction |

Many authors([4],{5],(8],{10],[11]) have studied multifractals of a self-similar
set associated with self-similar measures. A self-similar Cantor set is a typical
example of such self-similar set. A spectral class of aself-similar Cantor set, a
class of subsets derived from the local dimensions of a self-similar measure on a
self-similar Cantor set, has been investigated in [5, 6, 8] to study its geometrical
properties. In [6, 8], the Hausdorff and packing dimensions of subséts composing
a spectral class were calculated using power equations related to contraction
ratios and an associated probablhty of a self-similar measure. In [2], we related a
spectral class by the lower(upper) local dimensions of a self-similar measure with
the class by the lower or upper distribution sets(cf. {7]). It gives the comparison
of a subset in a spectral class with another subset in a different spectral class
via a distribution set. Using these results with the relationship, we compute the
values of dimensions of the subsets composing a spectral class generated by a
self-similar measure and its lower(upper) local dimensions. However we could
not find packing dimensions of some subsets. In fact, the accumulation points
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of some frequency sequence of the point in the subset contain a singular point.
We use a recent result([3]) of packing dimension about the divergence points in
a self-similar set to get the packing dimension of the subset. Further we make
the previous results([2]) simpler for better understanding.

2. Preliminaries
We denote F a self-similar Cantor set, which is the attractor of the similarities
fi(z) = ax and fo(z) = bz + (1 —b)on I = [0,1} witha > 0, b > 0 and
1—(a+b6)>0. Let I;, ... s, = fi;, 0---0 f; (I) where i; € {1,2} and 1 < j < k.
We note that if z € F, then there is o € {1,2}" such that ﬂ Iy = {z} (Here

k=1
olk = 11,12, - ,ix where o = iy,19, " ,ik,tk+1,-*). T € Fand z € I,
where o € {1,2}*, cx(z) denotes I, and |cx(z)| denotes the diameter of ci(z)
for each K = 0,1,2,---. Let p € (0,1) and we denote <y, a self-similar Borel

probability measure on F satisfying v,([1) = p(cf. [6]). dim(FE) denotes the
Hausdorff dimension of F and Dim(E) denotes the packing dimension of E([6]).
We note that dim(E) < Dim(E) for every set E([6]). We denote n;(x|k) the
number of times the digit 1 occurs in the first & places of z = o(cf. [7]).

For r € [0, 1}, we define the lower(upper) distribution set F(r)(F(r)) contain-
ing the digit 1 in proportion r by

E(r)= {:z: c F: likminf nl(;:lk) = 'r} )

F(r) = {:1: € F: limsup nl(’flk) = r}.
| | k—oo -

We call {F(r) : 0 < r < 1} the lower distribution class and {-F_(r) 0<r< 1}
the upper dist_'r'ibut'ion class. We write gﬁf ) ('E_ip)) for the set of points.at. which

the lbwer(mlpper) local dimension of v, on F is exactly «, so that

.. . logvp(Br(z)) .
E®) = | . d =
a’ {x im 1(r)1f "~ logr ap,

B {x . lim sup log 7»(Br(2)) _ a}.
r—0 logr |

We call '{E_g’)_(# ®) : a € R} the spéctral class generated by the lower local di-
mensions of a self-similar measure 7, and {-E_Sf.)(# )€ IR} the spectral class
generated by the upper local dimensions of a self-similar measure v,. We call
satisfying EP)(# ¢) (E-ip) (# ¢>)) an associated lower(upper) local dimension of
Tp- | . |
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In this paper, we assume that 0log0 = 0 for convenience. We define for
re 0,1} s
rlogp+ (1 —r)log(l —p)

rloga+ (1 —r)logd
From now on we will use g(r,p) as the above definition.

g(r,p) =

3. Main results

Lemma 1. Let a real number s satisfy a®* + b° = 1. If0 < p < a® , then
| p)

log(1-p) logp . . . logp  log(l -
< . Stmilarl y 1
log b loga tmalarly if a®* <p <1, then log < log b
Proof. Let 0 < p < a®. Since log function is an increasing function, we easily
log(1 — 1 »
see that o8(1 —p) <s< 2P The same arguments hold fora’ <p< 1. O
logb loga |

Remark 1. If p € (0,1) and p # a® where s satisfy a® + b°* = 1, then g(r,p) is a
stricltly monotone function for r € [0, 1}([2]). Hence we find a solution r for the
log(1 —p) logp| =, ¢ |logp logl —p)}
log b loga loga logb

equation g(r,p) = a where a € [

Proposition 1. For 0<r; <ry <1,

dim (E(rl)ﬂf(rz)) = inf g(r,7)

riSrir
and
Dim(E(r)NF(rz)) = sup_g(r,7)
| r<r<r;
Proof. It follow from {3, 9). O

Corollary 1. Let a real number s satisfy a®*+b*=1. For0<r; <a’® <ry <1,
- Dim(F(ry)) = s = Dim(F(r2)). .

In particular, |
Dim(F(0)) = s = Dim(F(1)).

Proof. It follow from the fact that g(a®,a®) = s and the above Proposition. [J
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Corollary 2. Let s be the unique real number satisfying a° + b* = 1. Then
(1) dim(F(r)) = dim(F(r)) = g(r,7) and Dim(F(r)) = s and Dim(F(r)) =
g(r,r) f0<r<a®, | | _
(2) dim(F(r)) = dim(F(r)) = g(r,7) and Dim(F(r)) = g(r,r) and Dim(F(r)) =
sifa® <r <1, _ | | -
(3) dim(F(a®)) = dim(F(a®)) = s and Dim(F(a*)) = Dim(F(a®)) = s

Proof. 1t follow from the above Corollary and the corollary 5 in [2]. O

Lemma 2. Let p € (0,1) and consider a self-similar measu're ’yp on F and let
r € {0,1}. Then for a real number s satisfying a® +b° =1

(1) E(r) =E® | if0<p<a,
(2) F(r) Egg’p) if a® <p <1,
(3) F(r) = 'E_;Ig.,p) if 0 <p < a®,
(4) F(r)=E%  ifa* <p<1l,

Proof. 1t follows from [2]. - . - 0O

(p1) E(P2)-. -

Theorem 1. For 0 < py, pz"< a® < p3, psa < 1, Eg('r'p) g(r,p2)

E(ps) E(m)

g(rps) = Eg(rps) for somer € [0,1].

Proof. We note that all they are F(r). It is immediate from the above Lemma.
O

Theorem 2. For 0 < :pl, P2 < a®<ps, ps<land0<r<a® where a real
number s satisfies a® + b° =

() ops(pe) +=(ps) —(pa)
E-g(:",pl) “‘-'—E-'g(i,pz) Eg(r ps) = Eg('r P4)

has Hausdorff dimension g(r,r) and packing dimension s.

P'roof. If 0 < r < a’ then F(r) has Hausdorff dimension g(r,7) and packing
dimension s. It is immediate from the above Proposition. [

Theorem 3. For 0 < p;, ps<a® <p3, ps<1anda® <r <1 where a real
number s satisfies a® + b°* =

(p1) _ pfp2) —=(p3) =(pa)
Eg(:" P1) 'E—g(i p2) EQ(?‘ ps) — Eg(r Pa)

has Hausdorff dimension and packing dimension g(r, T).

Proof. Ifa® <r <1 ,then F(r) has Hausdorff dimension and packing dimension
g(r,7r). It is 1mmed1ate from the above Proposition. ]
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Theorem 4. For 0 <p;, p2<a® <p3, ps<1

=) 5=(p2) (p3) (pa)
Eqotrp) = Egrps) = Eg(rps) = Eg(ripe)

for some r € [0,1].

Proof. We note that all they are F(r). It is immediate from the above Lemma.
O

Theorem 5. For 0 < p;, p2<a®*<p3 ps <l and0 <r <L a® where a real
number s satisfies a® + b° =

—=(P1) (Pz) (pa) (pa)
Eg(rapl ) Eg(rth) E‘Q(i;pd) Eg(:1p4)

has Hausdorff dimension g(r,r) and packing dimension s.

Proof. If 0 < r < a®, F(r) has Hausdorff dimension g(r,7) and packing dlmen—
sion s. It is 1mmedlate from the above Proposition. O

Theorem 6. For 0 < p;, p; <a®*<p3, pys<1anda® <r <1 where a real
number s satisfies a® + b° =1 ,

—(P1) +(P2)  pps)  p(pa)
EQ(T’PI) EQ(T,Pz) T =g(r,ps) Eg(r,;m;)

has Hausdorff dimension and packing dimension g(r,r).

Proof. If a® < r < 1, F(r) has Hausdorff dimension and packing dimension
g(r,r). It is immediate from the above Proposition. U

Theorem 7. For p = a® where a real number s satisfies a® +0° =1,
"E'gp) E(P) EP = F

has Hausdorff dimension and packing dimension s.

Proof. It is immediate from Remark 1 in [2]. O

Remark 2. For any p € (0,1) and any « such that a € [

€ logp, log(1 — p) : Eg’) or Efxp) can be represented by F(r) or F(r) for
loga logb

some solution r of the equation g(r,p) = a. Further we have full information of
its Hausdorff dimension and packing dimension.

log(1 —p) logp)
logb ’loga
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