NON-DIFFERENTIABLE POINTS OF A SELF-SIMILAR CANTOR FUNCTION

IN-SOO BAEK AND YOUNG-HA KIM

Abstract

We study the properties of non-diffenrentiable points of a self-similar Cantor function from which we conjecture a generalization of Darst's result that the Hausdorff dimension of the non-diffenrentiable points of the Cantor function is $\left(\frac{\ln 2}{\ln 3}\right)^{2}$

1. Introduction

Darst ([2],[3]) and Eidswick([5]) studied the characterizations of the set of non-differentiable points of the Cantor function. In particular, Darst showed that the Hausdorff dimension of the set at which the Cantor function is not differentiable is $\left(\frac{\ln 2}{\ln 3}\right)^{2}$. The Cantor function is constructed on the basis of the classical Cantor set which is a symmetric self-simular Cantor set Recently we($[1],[8])$ studied generalized forms of such classical Cantor set which contain a nonsymmetric similar Cantor set.
In this paper, we generalize the theorems which are essential to compute the Hausdorff dimension of the set of non-differentiable points of the symmetric self-similar Cantor function. Using our more generalized results, we guess the Hausdorff dimension of the set of nondifferentiable points of a non-symmetric self-similar Cantor function.

In fact, the main purpose of this paper is to support our conjecture that Hausdorff dimension of the set \mathcal{N}^{+}(the set of non-end
points of the self-similar Cantor set $C_{a, b}$ at which the corresponding self-similar Cantor function $f_{a, b}$ does not have a right-side derivative, finite or infinite) is $\left(\frac{\ln 2}{\ln \frac{1}{C_{p}}}\right)^{2}$ where $C_{p}=a^{p} b^{(1-p)}$ with $p=a^{s}$ and $a^{s}+b^{s}=1$. That is, we prove some fundamental theorems to support such conjecture.

2. Preliminaries

2.1. Construction of a self-similar Cantor set $C_{a, b}([7],[8])$

- From now on, we assume that a and b satisfying the inequalities $0<b \leq a<\frac{1}{2}$.
Now, we generate a self-similar Cantor set $C_{a, b}$ in $[0,1]$ by recursively removing middle segments of relative length $1-(a+b)$:

```
\(C_{a, b}^{0}=[0,1]\),
\(C_{a, b}^{1}=[0, a] \cup[1-b, 1]\),
\(C_{a, b}^{2}=\left[0, a^{2}\right] \cup[a-a b, a] \cup[1-b, 1-b+b a] \cup\left[1-b^{2}, 1\right]\),
and \(C_{a, b}=\cap_{n \geq 1} C_{a, b}^{n}\).
```

2.2. Ternary representation of points in $C_{a, b}$; location codes

Recalling the ternary representation of points in Cantor set, we see that each point t in $C_{a, b}$ has a corresponding ternary representation $\{t\}=\left(t_{1}, \cdots, t_{z(n)}, \cdot \cdot\right)$, where $t_{z(n)}=0$ or 2 , which locates its position in $C_{a, b}(0$ corresponds to 'left side' and 2 corresponds to 'right side'): the ternary representation of t is also called a location code for t. Code spaces are discussed at length in [4], where they are called string spaces. From now on, this ternary representation will be used for any expansion without confusion.

2.3. Construction of a self-similar Cantor function $f_{a, b}$

We easily see that there is a unique continuous non-decreasing function
$f_{a, b}$ satisfying

$$
f_{a, b}\left(x_{n}\right)=0 . \frac{t_{1}}{2} \frac{t_{2}}{2} \frac{t_{3}}{2} \ldots \frac{t_{n}}{2} \text { for } x_{n}=0 . t_{1} t_{2} t_{3} \ldots t_{n} . \text { Obviously }
$$

$$
\begin{aligned}
& f_{a, b}(x)=\frac{1}{2} \text { for } x \in[a, 1-b] \\
& f_{a, b}(x)=\frac{1}{4} \text { for } x \in\left[a^{2}, a-a b\right] \\
& f_{a, b}(x)=\frac{3}{4} \text { for } x \in\left[1-b+b a, 1-b^{2}\right], \text { etc. }
\end{aligned}
$$

2.4. The upper right derivative of $f_{a, b}$ at a non-right-end point x of $C_{a, b}$

The following statement, which is necessary to support our main theorem, verifies that the upper right derivative of $f_{a, b}$ at a nou-right-end point x of $C_{a, b}$ is infinite: The ternary representation of a non-right-end point of $C_{a, b}$ has infinitely many zero entries. Let $x=0 . t_{1} t_{2} t_{3} \ldots$ and $x_{n}=0 . t_{1} t_{2} t_{3} \ldots t_{n}$ then,

$$
f\left(x_{n}\right)=0 \cdot \frac{t_{1}}{2} \frac{t_{2}}{2} \frac{t_{3}}{2} \ldots \frac{t_{n}}{2} \text { and }
$$

$$
\lim _{n \rightarrow \infty} \frac{f(x)-f\left(x_{n}\right)}{x-x_{n}}=\frac{\frac{1}{2^{n}+2}\left(t_{n+1}+\frac{t_{n+2}}{2}\right)}{\left.\frac{1}{3^{n+1}\left(t_{n+1}+\frac{t_{n}+2}{3}\right.}\right)}
$$

By L'Hospital's rule, $\lim _{n \rightarrow \infty} \frac{f(x)-f\left(x_{n}\right)}{x-x_{n}}=\infty$. Thus, the upper right derivative of $f_{a, b}$ is infinite at a non-right-end point x.

2.5. Composition of $S_{a, b}$ of non-differentiable points

Fix a, b in $\left(0, \frac{1}{2}\right), S_{a, b}$ is composed of three sets of points described below, that is, let $S_{a, b}$ be the set of all non-differentiable points of $f_{a, b}$, let K be the set of all endpoints of $C_{a, b}$ and let $\mathcal{N}^{+}\left(\mathcal{N}^{-}\right)$be the set of non-end points of the self-similar Cantor set at which the corresponding self-similar Cantor function $f_{a, b}$ does not have a right-side(left-side) derivative, finite or infinite We have scen that the upper right-side(left-side) derivative of $f_{a, b}$ at a.non-right-end(non-left-end)point of $C_{a, b}$ is infinite. Thus, $\mathcal{N}^{+}\left(\mathcal{N}^{-}\right)$is the set of non-end points of $C_{a, b}$ at which the lower right(left) derivative of $f_{a, b}$ is finite Hence

$$
S_{a, b}=\mathcal{N}^{+} \cup \mathcal{N}^{-} \cup K
$$

2.6. Hausdorff dimension

For $U \subset \mathbb{R}$, we will denote $|U|$ by the diameter of U throughout this paper. We recall the s-dimensional Hausdorff measure([6],[9]) of F :

$$
H^{s}(F)=\lim _{\delta \rightarrow 0} H_{\delta}^{s}(F)
$$

where $H_{\delta}^{s}(F)=\inf \left\{\sum_{n=1}^{\infty}\left|U_{n}\right|^{s}:\left\{U_{n}\right\}_{n=1}^{\infty}\right.$ is a δ-cover of $\left.F\right\}$, and the Hausdorff dimension([6]) of F :

$$
\operatorname{dim}_{H}(F)=\sup \left\{s>0: H^{s}(F)=\infty\right\}\left(=\inf \left\{s>0: H^{s}(F)=0\right\}\right)
$$

3. Main Result

We will establish two facts, Theorems 3.5 and 3.7 below, relating elements in $\mathcal{N}^{+}\left(\mathcal{N}^{-}\right)$to long strings of zeroes(twos) in ternary representation. Let $z(n)(t(n))$ denote the position of the nth zero (two) in $\{t\}$.

Definition 3.1. Suppose that F^{*} and F are subsets of \mathcal{N}^{+}. Let k is the position of the nth zero in $\{t\}$ and let $n_{0}(t \mid k)$ denotes the number of times the digit 0 occurs in the first k places of our base 3 -expansion of t We define

$$
F^{*}(p)=\left\{t \in C_{a, b}: \varlimsup_{k \rightarrow \infty} \frac{n_{0}(t \mid k)}{k} \leq p\right\}
$$

and

$$
F(p)=\left\{t \in C_{a, b}: \lim _{k \rightarrow \infty} \frac{n_{0}(t \mid k)}{k}=p\right\}
$$

REMARK 3.2. Let t be a non-end point of $C_{a, b}(a>b)$ and $z(n)$ denote the position of the nth zero in $\{t\}$. If $\varlimsup_{n \rightarrow \infty}\left\{\frac{z(n+1)}{z(n)}\right\}<$ $\frac{\ln \frac{1}{C_{p}}}{\ln 2}$, then
(2) there is a positive integer M such that $\frac{z(n+1)}{z(n)}<\frac{\ln \frac{1}{C_{p}}}{\ln 2}$ for all $n \geq M$, where $C_{p}=a^{p} b^{1-p}(0 \leq p \leq 1)$.
(ii) there is a $\beta>0$ such that $z(n+1)<\left\{\frac{p \ln a+(1-p-\beta) \ln b}{\ln \frac{1}{2}}\right\} z(n)$ for all $n \geq M$.

Consider $N_{1} \geq M$,
(iii) $\left(\frac{1}{2}\right)^{z(n+1)} \geq\left\{a^{p} b^{(1-p-\beta)}\right\}^{z(n)}$ for all $n \geq N_{1}$.

Remark 3.3. Let t be a non-end point of $C_{a, b}(a>b)$. Let $z(n)$ denote the level at which $\{t\}$ and $\{x\}$ split. Then $\frac{f(x)-f(t)}{x-t} \geq$ $\left\{\frac{a^{p} b^{(1-p-\beta)}}{a^{\frac{1}{(n)}}{ }^{(n)} b^{\left(1-\frac{\beta}{x} \frac{1}{2}(n)\right.}}\right\}^{z(n)} \frac{1}{a b}$. Here,
$a^{n} b^{z(n)-n}=\left\{a^{\frac{n}{z(n)}} b^{\left(1-\frac{n}{z(n)}\right)}\right\}^{z(n)}, x-t \leq\left(a^{n} b^{z(n)-n}\right) \frac{1}{a b}$. Now, fix $\varepsilon>0$ such that $\beta-\varepsilon>0$ where β is in Remark 3.2. Then

For N_{1} in Remark 3.2,

$$
\begin{aligned}
\frac{f(x)-f(t)}{x-t} & \geq\left(a^{p-\frac{n}{z(n)}+\beta} b^{\frac{n}{2(n)}-p-\beta}\right)^{z(n)} \frac{1}{a b} \\
& =\left\{\left(\frac{a}{b}\right)^{p-\frac{n}{z(n)}+\beta}\right\}^{z(n)} \frac{1}{a b} \text { for all } n \geq N_{1} \\
& \geq\left\{\left(\frac{a}{b}\right)^{\beta-\varepsilon}\right\}^{z(n)} \frac{1}{a b} \rightarrow \infty \text { as } n \rightarrow \infty .
\end{aligned}
$$

Using Remarks 32 and 3.3, we get the following theorem.
Theorem 3.4. Let t be a non-end point of $C_{a, b}$. Let $z(n)$ denote the position of the nth zero in $\{t\}$; then

$$
\text { If } t \in \mathcal{N}^{+} \cap F^{*}(p), \quad \text { then } \quad \overline{\lim _{n \rightarrow \infty}} \frac{z(n+1)}{z(n)} \geq \frac{\ln \frac{1}{C_{p}}}{\ln 2}
$$

and in particular, if $t \in \mathcal{N}^{+} \cap F(p)$, then $\overline{\lim }_{n \rightarrow \infty} \frac{z(n+1)}{z(n)} \geq \frac{\ln \frac{1}{C_{p}}}{\ln 2}$.
Proof. It is sufficient to show that the lower-right derivative of $f_{a, b}$ is infinite at a non-end point t of $C_{a, b}$ when $\overline{\lim }_{n \rightarrow \infty} \frac{z(n+1)}{z(n)}<\frac{\ln \frac{1}{C_{p}}}{\ln 2}$ since $\overline{\lim }_{x \downarrow t} \frac{f(x)-f(t)}{x-t}=\infty$.
Suppose that $\overline{\operatorname{lm}}_{n \rightarrow \infty} \frac{z(n+1)}{z(n)}<\frac{\ln \frac{1}{C_{p}}}{\ln 2}$ and $t \in F^{*}(p) \cap \mathcal{N}^{+}$. By Remark 3.2, there is $\beta>0$ such that $\frac{z(n+1)}{z(n)}<\frac{-\ln a^{p} b^{1-p-\beta}}{\ln 2}<$ $\frac{-\ln a^{p} b^{1-p}}{\ln 2}$. Since $t \in F^{*}(p) \cap \mathcal{N}^{+}$,
$\frac{n}{z(n)}<p+\varepsilon$ for all $n \geq N_{2}$ for some positive integer N_{2}. Then $\frac{n}{z(n)}<p+\varepsilon$ for all $n \geq N\left(N=\max \left(N_{1}, N_{2}\right)\right)$, where N_{1} is in Remark 3.2.
By Remark 3.3, $\lim _{x \downarrow t} \frac{f(x)-f(t)}{x-t}=\infty$.

Theorem 3.5. Let t be a non-end point of $C_{a, b}$ and let $t \in F(p)$; then

$$
\text { if } \varlimsup_{n \rightarrow \infty} \frac{z(n+1)}{z(n)}>\frac{\ln \frac{1}{C_{p}}}{\ln 2}, \quad \text { then } \quad t \in \mathcal{N}^{+}
$$

Proof. There is $\delta>0$ such that $\varlimsup_{n \rightarrow \infty} \frac{z(n+1)}{z(n)}>\frac{\ln \frac{1}{C_{p}}}{\ln 2}+\delta$. There is
$\varepsilon>0$ such that $\frac{\ln \frac{1}{a^{p}+\varepsilon_{b} 1-\bar{p}+\epsilon}}{\ln 2}+\delta \leq \frac{z(n+1)}{z(n)}$ for infinitely many n. That is, $\frac{z(n+1)}{z(n)}+\frac{(p+\varepsilon) \ln a+(1-p+\varepsilon) \ln b}{\ln 2}>\delta$ for infinitely many n. Fix $t \in$ $F(p)$. For such $\varepsilon>0$, there is a positive integer N such that $p-\varepsilon<$ $\frac{n}{z(n)}<p+\varepsilon$ for all $n \geq N$. For such $n(\geq N)$, define a sequence of points $u(n)$ in $C_{a, b}$, decreasing to t, by specifying

$$
\begin{aligned}
& \{u(n)\}=\left(t_{1}, t_{2}, \cdots, t_{z(n)-1}, 2,0,0,0,0,0, \cdots\right) \\
& \{t(n)\}=\left(t_{1}, t_{2}, \cdots, t_{z(n)-1}, 0,2, \cdots, 2,0, * * *\right)
\end{aligned}
$$

Then

$$
\frac{f(u(n))-f(t)}{u(n)-t} \leq \frac{\left(\frac{1}{2}\right)^{z(n+1)-1}}{(1-a-b) b\left(a^{p+\varepsilon} b^{1-p+c}\right)^{z(n)}}
$$

Now, $\ln \frac{\left(\frac{1}{2}\right)^{z(n+1)}}{\left(a^{p+\varepsilon} b^{1-p+\varepsilon}\right)^{z(n)}}=z(n+1) \ln \frac{1}{2}-z(n) \ln \left(a^{p+\varepsilon} b^{1-p+\varepsilon}\right)$

$$
=-z(n) \ln 2\left(\frac{z(n+1)}{z(n)}+\frac{(p+\varepsilon) \ln a+(1-p+\varepsilon) \ln b}{\ln 2}\right) \rightarrow-\infty \text { as } n \rightarrow
$$ ∞.

That is, $\lim _{x \downarrow t} \frac{f(x)-f(t)}{x-t}=0$, which consequently implies that t is in \mathcal{N}^{+}.

Corollary 3.6. Let $t \in F\left(p_{0}\right)$. For $p=p_{0}$ such that $p_{0}=a^{s}$ with $a^{s}+b^{s}=1$,
if $\varlimsup_{n \rightarrow \infty} \frac{z(n+1)}{z(n)}>\frac{\ln \frac{1}{C_{p_{0}}}}{\ln 2}$, then $t \in \mathcal{N}^{+}$, where $c_{p_{0}}=a^{p_{0}} b^{1-p_{0}}$.
Remark 3.7. Considering Theorem 3.4 and Corollary 3.6, we positively conjecture that Hausdorff dimension of the set \mathcal{N}^{+}of points at which a self-similar Cantor function is not differentiable is $\left(\frac{\ln 2}{\ln \frac{1}{C_{p}}}\right)^{2}$ where $C_{p}=a^{p} b^{(1-p)}$ with $p=a^{s}$ and $a^{s}+b^{s}=1$.

REFERENCES

[1] I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26 (2001), 553-558
[2] R. Darst,, The Hausdorff Dimension of the Non-differentiability Set of the Cantor Function is $\left(\frac{\ln 2}{\ln 3}\right)^{2}$, Proc Amer. Math. Soc. 119 (1993), 105-108.
[3] R Darst,, Hausdorff Dimension of Sets of Non-differentiability Poznts of Cantor functions, Math Proc. Phil. Soc 117 (1995), 185-191
[4] C Edgar,, Measure, Topology, and Fractal Geometry, Springer-Verlag, 1990
[5] J. Eidswick,, A Characterization of the Non-dufferentiability Set of the Cantor Function, Proc Amer. Math Soc 42 (1974), 214-217
[6] K Falconer, ${ }^{\text {, }}$ The Geometry of Fractal Sets, Cambridge University Press, 1985
[7] K Falconer,, Techniques in fractal geometry, John Wiley and Sons, 1997
[8] H H Lee and I. S Baek,, Dimensıons of a Cantor type set and ats distribution sets, Kyungpook Math J 32 (1992), 149-152
[9] C Rogers,, Hausdorff Measures, Cambridge Unıversity Press, 1970
Department of Mathematics
Pusan University of Foreign Studies
Pusan 608-738, Korea
E-mall: isbaek@taejo.pufs.ac.kr

