East Asian Math J. 19 (2003), No 2, pp 213-219

NON-DIFFERENTIABLE POINTS OF A SELF-SIMILAR CANTOR FUNCTION

IN-SOO BAEK AND YOUNG-HA KIM

ABSTRACT We study the properties of non-differrentiable points of a self-similar Cantor function from which we conjecture a generalization of Darst's result that the Hausdorff dimension of the non-differrentiable points of the Cantor function is $(\frac{\ln 2}{\ln 3})^2$

1. Introduction

Darst([2],[3]) and Eidswick([5]) studied the characterizations of the set of non-differentiable points of the Cantor function. In particular, Darst showed that the Hausdorff dimension of the set at which the Cantor function is not differentiable is $(\frac{\ln 2}{\ln 3})^2$. The Cantor function is constructed on the basis of the classical Cantor set which is a symmetric self-similar Cantor set Recently we([1],[8]) studied generalized forms of such classical Cantor set which contain a nonsymmetric similar Cantor set.

In this paper, we generalize the theorems which are essential to compute the Hausdorff dimension of the set of non-differentiable points of the symmetric self-similar Cantor function. Using our more generalized results, we guess the Hausdorff dimension of the set of nondifferentiable points of a non-symmetric self-similar Cantor function.

In fact, the main purpose of this paper is to support our conjecture that Hausdorff dimension of the set \mathcal{N}^+ (the set of non-end

Received June 21, 2003 Revised December 12, 2003

²⁰⁰⁰ Mathematics Subject Classification 28A78 28A80.

Key words and phrases Hausdorff dimension, Cantor set, Cantor function

points of the self-similar Cantor set $C_{a,b}$ at which the corresponding self-similar Cantor function $f_{a,b}$ does not have a right-side derivative, finite or infinite) is $(\frac{ln2}{ln\frac{1}{C_p}})^2$ where $C_p = a^p b^{(1-p)}$ with $p = a^s$ and $a^s + b^s = 1$. That is, we prove some fundamental theorems to support such conjecture.

2. Preliminaries

2.1. Construction of a self-similar Cantor set $C_{a,b}([7],[8])$

From now on, we assume that a and b satisfying the inequalities $0 < b \le a < \frac{1}{2}$. Now, we generate a self-similar Cantor set $C_{a,b}$ in [0, 1] by recursively removing middle segments of relative length 1 - (a + b):

$$\begin{split} C^0_{a,b} &= [0,1], \\ C^1_{a,b} &= [0,a] \cup [1-b,1], \\ C^2_{a,b} &= [0,a^2] \cup [a-ab,a] \cup [1-b,1-b+ba] \cup [1-b^2,1], \\ &\vdots \\ \text{and } C_{a,b} &= \cap_{n \ge 1} C^n_{a,b}. \end{split}$$

2.2. Ternary representation of points in $C_{a,b}$; location codes

Recalling the ternary representation of points in Cantor set, we see that each point t in $C_{a,b}$ has a corresponding ternary representation $\{t\} = (t_1, \dots, t_{z(n)}, \dots)$, where $t_{z(n)} = 0$ or 2, which locates its position in $C_{a,b}(0$ corresponds to 'left side' and 2 corresponds to 'right side'): the ternary representation of t is also called a location code for t. Code spaces are discussed at length in [4], where they are called string spaces. From now on, this ternary representation will be used for any expansion without confusion.

2.3. Construction of a self-similar Cantor function $f_{a,b}$

We easily see that there is a unique continuous non-decreasing function

 $f_{a,b}$ satisfying

$$f_{a,b}(x_n) = 0.\frac{t_1}{2} \frac{t_2}{2} \frac{t_3}{2} \dots \frac{t_n}{2}$$
 for $x_n = 0.t_1 t_2 t_3 \dots t_n$. Obviously

2.4. The upper right derivative of $f_{a,b}$ at a non-right-end point x of $C_{a,b}$

The following statement, which is necessary to support our main theorem, verifies that the upper right derivative of $f_{a,b}$ at a nonright-end point x of $C_{a,b}$ is infinite: The ternary representation of a non-right-end point of $C_{a,b}$ has infinitely many zero entries. Let $x = 0.t_1t_2t_3...$ and $x_n = 0.t_1t_2t_3...t_n$ then,

$$f(x_n) = 0.\frac{t_1}{2} \frac{t_2}{2} \frac{t_3}{2} \dots \frac{t_n}{2} \text{ and}$$
$$\lim_{n \to \infty} \frac{f(x) - f(x_n)}{x - x_n} = \frac{\frac{1}{2^{n+2}} (t_{n+1} + \frac{t_{n+2}}{2})}{\frac{1}{3^{n+1}} (t_{n+1} + \frac{t_{n+2}}{3})}$$

By L'Hospital's rule, $\lim_{n\to\infty} \frac{f(x)-f(x_n)}{x-x_n} = \infty$. Thus, the upper right derivative of $f_{a,b}$ is infinite at a non-right-end point x.

2.5. Composition of $S_{a,b}$ of non-differentiable points

Fix a, b in $(0, \frac{1}{2})$, $S_{a,b}$ is composed of three sets of points described below, that is, let $S_{a,b}$ be the set of all non-differentiable points of $f_{a,b}$, let K be the set of all endpoints of $C_{a,b}$ and let $\mathcal{N}^+(\mathcal{N}^-)$ be the set of non-end points of the self-similar Cantor set at which the corresponding self-similar Cantor function $f_{a,b}$ does not have a rightside(left-side) derivative, finite or infinite We have seen that the upper right-side(left-side) derivative of $f_{a,b}$ at a non-right-end(nonleft-end)point of $C_{a,b}$ is infinite. Thus, $\mathcal{N}^+(\mathcal{N}^-)$ is the set of non-end points of $C_{a,b}$ at which the lower right(left) derivative of $f_{a,b}$ is finite Hence

$$S_{a,b} = \mathcal{N}^+ \cup \mathcal{N}^- \cup K.$$

2.6. Hausdorff dimension

For $U \subset \mathbb{R}$, we will denote |U| by the diameter of U throughout this paper. We recall the s-dimensional Hausdorff measure([6],[9]) of F:

$$H^{s}(F) = \lim_{\delta \to 0} H^{s}_{\delta}(F),$$

where $H^s_{\delta}(F) = \inf\{\sum_{n=1}^{\infty} |U_n|^s : \{U_n\}_{n=1}^{\infty} \text{ is a } \delta \text{-cover of } F\},\$ and the Hausdorff dimension([6]) of F:

 $\dim_{H}(F) = \sup\{s > 0 : H^{s}(F) = \infty\} (= \inf\{s > 0 : H^{s}(F) = 0\}).$

3. Main Result

We will establish two facts, Theorems 3.5 and 3.7 below, relating elements in $\mathcal{N}^+(\mathcal{N}^-)$ to long strings of zeroes(twos) in ternary representation. Let z(n)(t(n)) denote the position of the *n*th zero (two) in $\{t\}$.

DEFINITION 3.1. Suppose that F^* and F are subsets of \mathcal{N}^+ . Let k is the position of the *n*th zero in $\{t\}$ and let $n_0(t|k)$ denotes the number of times the digit 0 occurs in the first k places of our base 3-expansion of t We define

$$F^*(p) = \{t \in C_{a,b} : \lim_{k \to \infty} \frac{n_0(t|k)}{k} \le p\},$$

and

$$F(p) = \{ \ t \in C_{a,b} : \lim_{k \to \infty} rac{n_0(t|k)}{k} = p \ \}.$$

REMARK 3.2. Let t be a non-end point of $C_{a,b}$ (a > b) and z(n) denote the position of the nth zero in $\{t\}$. If $\overline{\lim}_{n\to\infty} \{\frac{z(n+1)}{z(n)}\} < \frac{\ln \frac{1}{C_p}}{\ln 2}$, then

(i) there is a positive integer M such that $\frac{z(n+1)}{z(n)} < \frac{\ln \frac{1}{C_p}}{\ln 2}$ for all $n \geq M$, where $C_p = a^p b^{1-p}$ $(0 \leq p \leq 1)$.

(ii) there is a $\beta > 0$ such that $z(n+1) < \{\frac{p \ln a + (1-p-\beta) \ln b}{\ln \frac{1}{2}}\} z(n)$ for all $n \ge M$. Consider $N_1 \ge M$, (iii) $(\frac{1}{2})^{z(n+1)} \ge \{a^p b^{(1-p-\beta)}\}^{z(n)}$ for all $n \ge N_1$. REMARK 3.3. Let t be a non-end point of $C_{a,b}$ (a > b). Let z(n) denote the level at which $\{t\}$ and $\{x\}$ split. Then $\frac{f(x)-f(t)}{x-t} \geq \{\frac{a^p b^{(1-p-\beta)}}{a^{\frac{n}{z(n)}}b^{(1-\frac{n}{z(n)})}}\}^{z(n)} \frac{1}{ab}$. Here, $a^n b^{z(n)-n} = \{a^{\frac{n}{z(n)}}b^{(1-\frac{n}{z(n)})}\}^{z(n)}, x-t \leq (a^n b^{z(n)-n}) \frac{1}{ab}$. Now, fix $\varepsilon > 0$ such that $\beta - \varepsilon > 0$ where β is in Remark 3.2. Then For N_1 in Remark 3.2,

$$\frac{f(x)-f(t)}{x-t} \geq \left(a^{p-\frac{n}{z(n)}+\beta}b^{\frac{n}{z(n)}-p-\beta}\right)^{z(n)} \frac{1}{ab}$$

= $\left\{\left(\frac{a}{b}\right)^{p-\frac{n}{z(n)}+\beta}\right\}^{z(n)} \frac{1}{ab}$ for all $n \geq N_1$
 $\geq \left\{\left(\frac{a}{b}\right)^{\beta-\epsilon}\right\}^{z(n)} \frac{1}{ab} \to \infty$ as $n \to \infty$.

Using Remarks 3 2 and 3.3, we get the following theorem.

THEOREM 3.4. Let t be a non-end point of $C_{a,b}$. Let z(n) denote the position of the nth zero in $\{t\}$; then

$$\text{if } t \in \mathcal{N}^+ \cap F^*(p), \quad \text{then} \quad \overline{\lim_{n \to \infty} \frac{z(n+1)}{z(n)}} \geq \frac{\ln \frac{1}{C_p}}{\ln 2},$$

and in particular, if $t \in \mathcal{N}^+ \cap F(p)$, then $\overline{\lim_{n \to \infty} \frac{z(n+1)}{z(n)}} \geq \frac{\ln \frac{1}{C_p}}{\ln 2}$.

Proof. It is sufficient to show that the lower-right derivative of $f_{a,b}$ is infinite at a non-end point t of $C_{a,b}$ when $\overline{\lim}_{n\to\infty} \frac{z(n+1)}{z(n)} < \frac{\ln \frac{1}{C_p}}{\ln 2}$ since $\overline{\lim}_{x\downarrow t} \frac{f(x)-f(t)}{x-t} = \infty$. Suppose that $\overline{\lim}_{n\to\infty} \frac{z(n+1)}{z(n)} < \frac{\ln \frac{1}{C_p}}{\ln 2}$ and $t \in F^*(p) \cap \mathcal{N}^+$. By Remark 3.2, there is $\beta > 0$ such that $\frac{z(n+1)}{z(n)} < \frac{-\ln a^p b^{1-p-\beta}}{\ln 2} < \frac{-\ln a^p b^{1-p}}{\ln 2}$. Since $t \in F^*(p) \cap \mathcal{N}^+$,

 $\frac{-\ln a^{p}b^{1-p}}{\ln 2}. \text{ Since } t \in F^{*}(p) \cap \mathcal{N}^{+},$ $\frac{n}{z(n)}
<math display="block">\frac{n}{z(n)}
Remark 3.2.$

By Remark 3.3, $\lim_{x \downarrow t} \frac{f(x) - f(t)}{x - t} = \infty$.

I S BAEK AND Y H KIM

THEOREM 3.5. Let t be a non-end point of $C_{a,b}$ and let $t \in F(p)$; then

if
$$\lim_{n \to \infty} \frac{z(n+1)}{z(n)} > \frac{\ln \frac{1}{C_p}}{\ln 2}$$
, then $t \in \mathcal{N}^+$.

There is $\delta > 0$ such that $\overline{\lim}_{n \to \infty} \frac{z(n+1)}{z(n)} > \frac{\ln \frac{1}{Cp}}{\ln 2} + \delta$. Proof. There is $\varepsilon > 0$ such that $\frac{\ln \frac{1}{a^{p+\varepsilon_b 1-p+\varepsilon}}}{\ln 2} + \delta \leq \frac{z(n+1)}{z(n)}$ for infinitely many n. That is, $\frac{z(n+1)}{z(n)} + \frac{(p+\varepsilon)\ln a + (1-p+\varepsilon)\ln b}{\ln 2} > \delta \text{ for infinitely many } n. \text{ Fix } t \in$ F(p). For such $\varepsilon > 0$, there is a positive integer N such that $p - \varepsilon < \varepsilon$ $rac{n}{z(n)} for all <math>n \ge N$. For such $n(\ge N)$, define a sequence of points u(n) in $C_{a,b}$, decreasing to t, by specifying $\{u(n)\} = (t_1, t_2, \cdots, t_{z(n)-1}, 2, 0, 0, 0, 0, 0, \cdots),$ $\begin{cases} u(n) = (i_1, i_2, \dots, i_{z(n)-1}, z, 0, 0, 0, 0, 0, \dots), \\ \{t(n)\} = (t_1, t_2, \dots, t_{z(n)-1}, 0, 2, \dots, 2, 0, **). \\ \\ \text{Then} \qquad \frac{f(u(n)) - f(t)}{u(n) - t} \leq \frac{(\frac{1}{2})^{z(n+1)-1}}{(1 - a - b)b(a^{p+\epsilon}b^{1-p+\epsilon})^{z(n)}}. \\ \\ \text{Now, } \ln \frac{(\frac{1}{2})^{z(n+1)}}{(a^{p+\epsilon}b^{1-p+\epsilon})^{z(n)}} = z(n+1)\ln\frac{1}{2} - z(n)\ln(a^{p+\epsilon}b^{1-p+\epsilon}) \\ \\ = -z(n)\ln 2(\frac{z(n+1)}{z(n)} + \frac{(p+\epsilon)\ln a + (1 - p + \epsilon)\ln b}{\ln 2}) \rightarrow -\infty \text{ as } n \rightarrow \infty \end{cases}$ ∞ . That is, $\lim_{x \downarrow t} \frac{f(x) - f(t)}{x - t} = 0$, which consequently implies that t is in \mathcal{N}^+ .

COROLLARY 3.6. Let $t \in F(p_0)$. For $p = p_0$ such that $p_0 = a^s$ with $a^s + b^s = 1$,

 \square

$$\text{if} \quad \lim_{n \to \infty} \ \frac{z(n+1)}{z(n)} \ > \ \frac{\ln \frac{1}{C_{p_0}}}{\ln 2}, \quad \text{then} \quad t \in \mathcal{N}^+, \text{ where } c_{p_0} = a^{p_0} b^{1-p_0}$$

REMARK 3.7. Considering Theorem 3.4 and Corollary 3.6, we positively conjecture that Hausdorff dimension of the set \mathcal{N}^+ of points at which a self-similar Cantor function is not differentiable is $\left(\frac{\ln 2}{\ln \frac{1}{2}}\right)^2$ where $C_p = a^p b^{(1-p)}$ with $p = a^s$ and $a^s + b^s = 1$.

218

REFERENCES

- I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26 (2001), 553-558
- [2] R. Darst,, The Hausdorff Dimension of the Non-differentiability Set of the Cantor Function is $(\frac{\ln 2}{\ln 3})^2$, Proc. Amer. Math. Soc. **119** (1993), 105-108.
- [3] R Darst., Hausdorff Dimension of Sets of Non-differentiability Points of Cantor functions, Math Proc. Phil. Soc 117 (1995), 185-191
- [4] C Edgar,, Measure, Topology, and Fractal Geometry, Springer-Verlag, 1990
- [5] J. Eidswick, A Characterization of the Non-differentiability Set of the Cantor Function, Proc. Amer. Math. Soc. 42 (1974), 214-217
- [6] K Falconer., The Geometry of Fractal Sets, Cambridge University Press, 1985
- [7] K Falconer,, Techniques in fractal geometry, John Wiley and Sons, 1997
- [8] H H Lee and I. S Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math J 32 (1992), 149-152
- [9] C Rogers,, Hausdorff Measures, Cambridge University Press, 1970

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Korea *E-mail*: isbaek@taejo.pufs.ac.kr