• Title/Summary/Keyword: Cantilevered Beam

Search Result 102, Processing Time 0.04 seconds

Damping Measurements of Structural Rectangular Beam (구조용 사각 보의 감쇠측정)

  • Ryu, Bong-Jo;Song, Seon-Ho;Yoon, Choong-Sup;Ahn, Byung-Wook;Lee, Young-Yeob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1071-1074
    • /
    • 2006
  • The frequency response functions and loss factors, $\eta$, of structurally hollowed, rectangular, metal cantilever beams have been measured in bending vibrations within low strain amplitudes. The beams were heat treated or fined with aluminum to vary the material conditions. The measured frequency response functions at the end of the cantilevered beam were processed to calculate the structural damping ratios. The results showed that the modal frequencies and damping ratios of heat treated beam are increased due to the increase of beam rigidity with the predictions of the classical beam theory. When the beams are fined with aluminum, however, the frequencies are decreased due to the increase of mass, while the damping ratios are increased. As the agreement between measurement and classical theory is good, the performance of a beam with heat treated or fined with dissimilar material can be duplicated, for industrial and most practical purposes, by the theory developed for an internally damped homogeneous beam.

  • PDF

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

Coupled flexural and torsional vibration of channel beam (휨과 비틀림이 연계된 채널보의 진동)

  • 김상환
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.327-335
    • /
    • 1995
  • The study deals with the vibration of a beam whose flexural and centroidal axes are not coincident. The elementary bending-twisting theory is employed to derive the equation of motion, in which the effects of rotary inertia are added to the bending displacements and the effects of warping are added to the twist. Bending translation is restricted to one direction so that one bending equation is used instead of two. The equations of motion are solved by using the boundary value problem. The exact natural frequencies are fund from the frequency equation, which is obtained from the condition that the homogeneous system of algebraic equations representing the spatial solution shall not yield a trivial solution. The orthogonal conditions are established, and the principal mode equations of forced vibration are derived. As an example, the cantilevered beam is chosen and the first some natural frequencies and their modal shapes are found.

  • PDF

Spectral Element Model for the Vibration Analysis of Elastic Layered Beams (탄성적층보의 진동해석을 위한 스펙트럴요소 모델)

  • 김주홍;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.438-443
    • /
    • 1998
  • In this paper, the axial-bending coupled equations of motion for an elastic layered beam are derived. From this equation of motion, the spectral element is formulated for the vibration analysis by use of the spectral element method (SEM). The modal analysis methodology for the present coupled field equations of motion is then developed. As an illustrative example, a cantilevered beam is considered. The correctness of the equations of motion developed herein is verified by gradually reducing the thickness of upper elastic layer to converge to the single layered elastic beam solutions. Also, the accuracy of spectral element is confirmed by comparing its results with the result by modal analysis.

  • PDF

Studies on the vibration mode of the cantilevered beam with Piezoelectric Element (지능재료가 부착된 외팔보의 진동모형에 관한 연구)

  • 차진훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.204-209
    • /
    • 2000
  • It is the first step to establish the exact vibration model of the structure when constructing the smart structure with desired vibration scheme. In this paper, vibration model of beam with piezoelectric element boned on the surface is presented by considering the thickness effect of the bond layer. In contrast to the previous papers which neglect the effect of bond layer, the presented vibration model considers the effect of bond layer assuming the prefect bond condition. The perfect bond condition is tested by comparing the controllability of beams with three types of bond layer. An optimal vibration control of the beam can be performed when there exists perfect-bond condition between the piezoelectric element and the main structure.

  • PDF

Vibration Characteristics of a Cantilevercd Beam with a Guided Mass and an Elastic Spring Supports (안내질량을 갖는 탄성지지된 외팔보의 진동 특성)

  • 류봉조;이규섭;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.408-413
    • /
    • 1994
  • The paper describes the vibration characteristics of the mechanical system consisting of a uniform cantilevered Timoshenko beam with a guided mass and an elastic spring supports. The free end of the beam does not rotate and the spring attatched to the guided mass is elastically restained against translation. The effect of magnitudes, rotary inertia and the size of the guided mass on the vibration characteristics is fully investigated by the numerical simulation using FEM and experiment. In order to verify the eigenvalue sensitivity for considered system, comparison exact solutions with FEM are conducted, and a good agreement between two solutions is also highlighted.

  • PDF

항공기 날개 보의 중량경감용 천공 형상연구

  • Lee, Si-Hun;Gong, Du-Hyeon;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.304-310
    • /
    • 2017
  • In this paper, various webs of I-shaped beam used in aircraft spars are examined. Under the assumption that an aircraft spar is a cantilevered beam with a constant cross-section and is subjected to only bending, four kinds of webs are analyzed for three different sizes. To enable comparison, each hole has the same area and are subjected to the same load by using EDISON 2D Continuum analysis. While circular hole is the most often used, elliptic one is obtained with the minimum von-Mises stress by about 40% decreased. To verify the results gathered by EDISON, comparison was made with ANSYS and analytic predictions obtained with the stress intensity factor K. As comparison shows insignificant discrepancies, it is concluded that a well-designed beam with elliptic holes will be the most efficient spar regarding weight to rigidity ratio in terms of the bending stress.

  • PDF

Active Vibration Control of a Flexible Cantilever Beam Using SMA Actuators (SMA 작동기를 이용한 유연외팔보의 능동진동제어)

  • Choi, S.B.;Cheong, C.C.;Hwang, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.167-174
    • /
    • 1995
  • This paper experimentally demonstrates the feasibility of using shape memory alloy(SMA) actuators in controlling structural vibrations of a flexible cantilevered beam. The dynamic characteristics of the SMA actuator are identified and integrated with the beam dynamics. Three types of control schemes; constant amplitude controller(CAC), proportional amplitude controller (PAC) and sliding mode controller(SMC) are designed. The CAC and PAC are determined on the basis of physical phenomenon of the SMA actuator, while teh SMC is formulated in a mathematical manner. The proposed controllers are implemented and evaluated at various operating condirions by investigating the control level of suppression in transient vibration.

  • PDF

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.