Abstract
The study deals with the vibration of a beam whose flexural and centroidal axes are not coincident. The elementary bending-twisting theory is employed to derive the equation of motion, in which the effects of rotary inertia are added to the bending displacements and the effects of warping are added to the twist. Bending translation is restricted to one direction so that one bending equation is used instead of two. The equations of motion are solved by using the boundary value problem. The exact natural frequencies are fund from the frequency equation, which is obtained from the condition that the homogeneous system of algebraic equations representing the spatial solution shall not yield a trivial solution. The orthogonal conditions are established, and the principal mode equations of forced vibration are derived. As an example, the cantilevered beam is chosen and the first some natural frequencies and their modal shapes are found.