• Title/Summary/Keyword: Calcium ion ($Ca^{2+}$)

Search Result 271, Processing Time 0.025 seconds

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

Activation of Lysophosphatidic Acid Receptor Is Coupled to Enhancement of $Ca^{2+}$ -Activated Potassium Channel Currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Hwang, Sung-Hee;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.223-228
    • /
    • 2013
  • The calcium-activated $K^+$ ($BK_{Ca}$) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. $Ca^{2+}$ is the main regulator of $BK_{Ca}$ channel activation. The $BK_{Ca}$ channel contains two high affinity $Ca^{2+}$ binding sites, namely, regulators of $K^+$ conductance, RCK1 and the $Ca^{2+}$ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular $Ca^{2+}$ levels through diverse G proteins such as $G{\alpha}_{q/11}$, $G{\alpha}_i$, $G{\alpha}_{12/13}$, and $G{\alpha}s$ and the related signal transduction pathway. In the present study, we examined LPA effects on $BK_{Ca}$ channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated $BK_{Ca}$ channel activation was also attenuated by the PLC inhibitor U-73122, $IP_3$ inhibitor 2-APB, $Ca^{2+}$ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated $BK_{Ca}$ channel activation. The present study indicates that LPA-mediated activation of the $BK_{Ca}$ channel is achieved through the PLC, $IP_3$, $Ca^{2+}$, and PKC pathway and that LPA-mediated activation of the $BK_{Ca}$ channel could be one of the biological effects of LPA in the nervous and vascular systems.

Cultural Conditions for Pretense Production by a feather-Degrading Bacterium, Bacillus megaterium F7-1 (우모분해세균 Bacillus megaterium F7-1에 의한 단백질 분해효소 생산에 영향을 미치는 배양조건)

  • Son Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.315-318
    • /
    • 2005
  • The effects of inorganic salts and feather concentrations on pretense production by Bacillus megaterium F7-1 were investigated. Pretense production was dependent on the presence of phosphates in the medium. Supplementation of medium with calcium ion slightly increased protease production. The highest protease production was obtained at $1.4\%$ feather. The optimal medium contained $2.0\%$ glucose, $0.8\%$ skim milk, $0.06\%\;K_{2}HPO_{4}\%,\;0.04\%\;KH_{2}PO{4},\;0.06\%\;NaCl,\;0.03\%\;MgCl_{2}\cdot6H_{2}O,\;0.002\%\;CaCl_{2}\cdot2H_{2}O,\;and\;1.4\%$ whole feather. By using this optimized medium, increased production of the protease was achieved compared with the cases of using basal medium.

Annexin I의 구조와 결합에 관한 분광학적 연구

  • 이봉진;방근수;이연희;이태우;나도선
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.263-263
    • /
    • 1994
  • Annexin I is a member of the in family of calcium dependent phospholipid banding proteins and is an in vitro phospholipase $A_2$ (PLA$_2$) inhibitor. The mechanism of PLA$_2$ inhibition by annexin I is still ambiguous. The structure of annexin I was studied at the atomic level by using nuclear magnetic resonance (NMR), circular dichrotsm (CD) and fluorescence spectroscopy. Recombinant human annexin I and N-terminally truncated annexin I (1-31 deleted: d-annexin I) were purified and their NMR spectra were compared. The NMR spectra of the two were similar. When $Ca^{2+}$ ion added to annexin I ad d-annexin I, peak broadening occurred, but no significant spectroscopic change was observed. When porcine pancreatic PLA$_2$ was added to deuterium labeled annexin I, an interaction of annexin I with PLA$_2$ was observed as indicated by the disappearance and shift of several peaks in the NMR spectrum. This result supports a protein-protein interaction mechanism for PLA$_2$ inhibition by annexin I.I.

  • PDF

Effects of ATP and ADP on iron uptake in rat heart mitochondria

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.245-252
    • /
    • 2010
  • Iron uptake in mitochondria and fractionated mitochondria compartments was studied to understand iron transport in heart mitochondria. The inner membrane is most active in iron uptake. Mitochondrial uptake was dependent on iron concentration and the amount of mitochondria. Iron transport was inversely proportional to pH in the range of 6.0 to 8.0. Iron transport reached a maximum after 30 min of incubation at $37^{\circ}C$. Iron uptake was inhibited by 1 mM ATP and stimulated by 1 mM ADP. The oxidative phosphorylation inhibitor oligomycin inhibited iron uptake, but rotenone and antimycin A did not. The divalent ions $Mg^{2+}$, $Cu^{2+}$, $Mn^{2+}$, and $Zn^{2+}$ suppressed iron uptake at $10\;{\mu}M$ and stimulated it at 1 mM. The divalent ion $Ca^{2+}$ stimulated iron uptake at $10\;{\mu}M$ and suppressed it at 1 mM, competing with iron. The uptake of calcium was stimulated by 10 to $1000\;{\mu}M$ ATP, while iron uptake was stimulated reciprocally by 10 to $1000\;{\mu}M$ ADP, suggesting that these ions have movements similar to those of ATP and ADP.

Review on the mechanism for the reduction of raphide-induced toxicity via processing of Pinelliae Tuber and Arisaematis Rhizoma (포제(炮製)에 의한 반하(半夏)와 천남성(天南星)의 침상결정 유발 독성 감소 기전 고찰)

  • Kim, Jung-Hoon;Lee, Guemsan;Choi, Goya;Kim, Young-Sik;Lee, Seungho;Kim, Hongjun
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.15-27
    • /
    • 2021
  • Objectives : The processing of Pinelliae Tuber and Arisaematis Rhizoma is a crucial step to reduce the severe acrid irritation mainly due to the needle-like crystals (raphides). Ginger, alum and bile juice have been used as adjuvant materials for the processing. Methods : Bibliographic research on ancient processing and experimental processing was performed to investigate the toxicity reduction mechanisms of the processing with ginger, alum and bile juice. Results : Ginger has been a major adjuvant for the processing of Pinelliae Tuber, followed by alum and bile juice since Song (宋) and Myeong (明) dynasties, and Arisaematis Rhizoma has been mainly used as Damnamseong (膽南星). The raphides consisting of calcium oxalate, lectin, agglutinin and polysaccharides can induce acrid irritation and the inflammatory reactions. The lipophilic components in the ginger denatured the structure of raphides and 6-gingerol-contained ginger extract attenuated the inflammatory reaction. The calcium ion (Ca2+) of calcium oxalate was substituted to the aluminium ion (Al3+) of the alum, which damaged the calcium oxalate structure. Lectin attached to the surface of raphides was dissolved in alum solution and consequently its structure was denatured. The cholate in the bile juice formed the complex with the oxalate anion or the calcium cation. Moreover, the enzymes activated by Lactobacillus or Bifidobacterium during the fermentation promoted the fragmentation of oxalate. Conclusion : The adjuvant materials damaged the raphides by denaturing or degrading the calcium oxalate, resulting in the reduction of acrid irritation. Further experimental studies would support the toxicity reduction mechanism of the processing.

The effect of UV-C irradiation and EDTA on the uptake of Co2+ by antimony oxide in the presence and absence of competing cations Ca2+ and Ni2+

  • Malinen, Leena;Repo, Eveliina;Harjula, Risto;Huittinen, Nina
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.627-636
    • /
    • 2022
  • In nuclear power plants and other nuclear facilities the removal of cobalt from radioactive liquid waste is needed to reduce the radioactivity concentration in effluents. In liquid wastes containing strong organic complexing agents such as EDTA cobalt removal can be problematic due to the high stability of the Co-EDTA complex. In this study, the removal of cobalt from NaNO3 solutions using antimony oxide (Sb2O3) synthesized from potassium hexahydroxoantimonate was investigated in the absence and presence of EDTA. The uptake studies on the ion exchange material were conducted both in the dark (absence of UV-light) and under UV-C irradiation. Ca2+ or Ni2+ were included in the experiments as competing cations to test the selectivity of the ion exchanger. Results show that UV-C irradiation noticeably enhances the cobalt sorption efficiency on the antimony oxide. It was shown that nickel decreased the sorption of cobalt to a higher extent than calcium. Finally, the sorption data collected for Co2+ on antimony oxide was modeled using six different isotherm models. The Sips model was found to be the most suitable model to describe the sorption process. The Dubinin-Radushkevich model was further used to calculate the adsorption energy, which was found to be 6.2 kJ mol-1.

Enhancement of the Working Capacity and Selectivity Factor of Calcium-Exchanged Y Zeolites for Carbon Dioxide Pressure Swing Adsorption (이산화탄소 압력순환흡착을 위한 칼슘 이온교환 Y 제올라이트의 작업용량과 선택계수 향상)

  • Kim, Moon Hyeon
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • Y zeolites with different extra-framework cations, such as $Na^+$, $N^+$, $Ca^{2+}$, and $Cu^{2+}$, with different charge and ionic radius have been investigated to greatly enhance a working capacity (W) of $CO_2$ adsorption at $25^{\circ}C$ and a $CO_2/CO$ selectivity factor (S). A sample of NaY with a very small amount of 0.012% $Ca^{2+}$ was fully reversible for seven times repeated $CO_2$ adsorption/desorption cycles, thereby forming no surface carbonates unlikely earlier reports. Although at pressures above 4 bar, 2.00% CaY, 1.60% CuY and 1.87% LiY all showed a $CO_2$ adsorption very similar to that measured for NaY, they gave a significant decrease in the adsorption at lower pressures, depending on the metal ion. At 0.5 ~ 2.5 bar, the extent of $CO_2$ adsorption was in the order NaY > 1.60% CuY > 2.00% CaY > 1.87% LiY. All the $Na^+-based$ metals-exchanged zeolites have a FAU (faujasite) framework and a Si/Al value near 2.6; thus, there is no discernible difference in the framework topology, framework chemical compositions, effective aperture size, and channel structure between the zeolite samples. Therefore, the distinctive behavior in the adsorption of $CO_2$ with a character as a weak Lewis acid is associated with the site basicity of the zeolites, and the interaction potentials of the cations. Different trend was shown for a CO adsorption due to weaker quadrupole interactions. Adsorption of $CO_2$ and CO on samples of CaY with 0.012 to 5.23% Ca disclosed a significant dependence on the Ca loading. The $CO_2$ adsorption increased when the cation exists up to ca. 0.05%, while it decreased at higher Ca amounts. However, values for both W and S could greatly increase as the bare zeolite is enriched by $Ca^{2+}$ ions. The 5.23% CaY had $W=2.37mmol\;g^{-1}$ and S = 4.37, and the former value was comparable to a benchmark reported in the literature.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Neuroprotective Activity of Phytosterols Isolated from Artemisia apiacea (청호의 Phytosterol 성분 분리 및 뇌세포 보호 활성)

  • Lee, Jiwoo;Weon, Jin Bae;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.214-219
    • /
    • 2014
  • Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia including China, Korea, and Japan. In this study, the three phytosterol constituents were isolated and identified from the hexane fraction of 80% aqueous methanol extract of A. apiacea. Compounds were isolated using open column chromatography (silica gel). Their chemical structures were also established using $^1H$-NMR and $^{13}C$-NMR. Moreover, neuroprotective activity of each compound against glutamate-induced neurotoxicity in hippocampal HT-22 cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Inhibition of reactive oxygen species (ROS) and calcium ion ($Ca^{2+}$) accumulation were measured for elucidation of neuroprotective mechanism of isolated compounds. They showed that stigmasterol had neuroprotective activity against the glutamate-induced toxicity by inhibition of ROS and $Ca^{2+}$ production. In conclusion, isolated compound of A. apiacea might be useful for therapeutic agent against neurodegenerative diseases.