DOI QR코드

DOI QR Code

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment

NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향

  • Jichan, Kim (School of Chemical Engineering, Pusan National University) ;
  • Sumin, Seo (School of Chemical Engineering, Pusan National University) ;
  • Jungho, Jae (School of Chemical Engineering, Pusan National University)
  • 김지찬 (부산대학교 응용화학공학부) ;
  • 서수민 (부산대학교 응용화학공학부) ;
  • 제정호 (부산대학교 응용화학공학부)
  • Received : 2022.09.06
  • Accepted : 2022.10.05
  • Published : 2022.12.30

Abstract

With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

생물학적 효소 반응 산업의 발전으로 인해 바이오매스 자원으로부터 젖산을 대량 생산하는 것이 가능해짐에 따라 젖산의 추가적인 탈수 반응을 통해 고흡수성 수지 SAP, 디스플레이의 점접착제 등의 원료가 되는 아크릴산을 생산하는 친환경 공정이 많은 주목을 받고 있다. 본 연구에서는 젖산 탈수 반응에서 높은 활성을 가지나, 비활성화가 빠른 단점을 가지는 NaY 제올라이트 촉매의 산점 및 염기점을 조절하여, 높은 아크릴산 선택도를 장시간 유지 가능한 촉매를 개발하고자 하였다. 첫번째로 NaY 모촉매에 부분적으로 칼슘을 치환하여 산/염기도를 변화시키고자 하였으며, 이온 교환법과 초기습식 함침법을 모두 적용하여 그 효과를 탐색하였다. 그 결과 직접적으로 Ca를 함침하는 것이 선택도 및 안정성 측면에서 우수한 것을 확인하였으며, 16시간 반응 동안 40% 수율의 AA를 안정적으로 생산하였다. 산/염기 특성 분석 결과, 함침된 Ca는 주로 CaO 형태로 촉매 외피에 존재하면서, 젖산 탈수 반응을 위한 추가적인 염기점으로 작용하는 것으로 나타났다. 추가적으로 NaY 모촉매의 산세기를 약화시키면서 기공 내외적으로 Ca을 고르게 분산시키기 위해, KOH 처리를 통한 탈규소화 후, Ca를 함침하였다. 그러나 기존 Ca-NaY 촉매 대비 아크릴산 선택도가 증진되는 효과는 관찰하지 못하였다. 최종적으로 KOH 처리 촉매에서 Ca 담지양을 1 wt%에서 5 wt%로 증가시켜 염기점 양을 증진시켜 보았다. 그 결과, 기존 1 wt% Ca가 함침된 촉매에 비해 아크릴산 선택도를 65%까지 증진시킬 수 있었으며, 24시간 반응 동안 촉매 안정성 또한 꾸준하게 유지되어, 젖산 탈수 반응에서 염기점 조절이 선택도 및 안정성 향상에 중요한 변수임을 제시하였다.

Keywords

Acknowledgement

본 연구는 2021학년도 부산대학교 4단계 BK21 대학원혁신지원사업에 의한 연구임.

References

  1. Pagliaro, M., "Glycerol: the renewable platform chemical," Elsevier (2017).
  2. Bonnotte, T., Paul, S., Araque, M., Wojcieszak, R., Dumeignil, F., and Katryniok, B., "Dehydration of lactic acid: the state of the art," ChemBioEng Rev., 5(1), 34-56 (2018). https://doi.org/10.1002/cben.201700012
  3. Zhang, X., Lin, L., Zhang, T., Liu, H., and Zhang, X., "Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts," Chem. Eng. J., 284, 934-941 (2016). https://doi.org/10.1016/j.cej.2015.09.039
  4. Wadley, D. C., Tam, M. S., Kokitkar, P. B., Jackson, J. E., and Miller, D. J., "Lactic acid conversion to 2, 3-pentanedione and acrylic acid over silica-supported sodium nitrate: reaction optimization and identification of sodium lactate as the active catalyst," J. Catal., 165(2), 162-171 (1997). https://doi.org/10.1006/jcat.1997.1484
  5. Ghantani, V. C., Lomate, S. T., Dongare, M. K., and Umbarkar, S. B., "Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts," Green Chem., 15(5), 1211-1217 (2013). https://doi.org/10.1039/c3gc40144h
  6. Zhang, J., Zhao, Y., Pan, M., Feng, X., Ji, W., and Au, C.-T., "Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates," ACS Catal., 1(1), 32-41 (2011). https://doi.org/10.1021/cs100047p
  7. Zhang, J., Zhao, Y., Feng, X., Pan, M., Zhao, J., Ji, W., and Au, C.-T., "Na2HPO4-modified NaY nanocrystallites: efficient catalyst for acrylic acid production through lactic acid dehydration," Catal. Sci. Technol., 4(5), 1376-1385 (2014). https://doi.org/10.1039/C3CY00935A
  8. Wang, H., Yu, D., Sun, P., Yan, J., Wang, Y., and Huang, H., "Rare earth metal modified NaY: Structure and catalytic performance for lactic acid dehydration to acrylic acid," Catal. Commun., 9(9), 1799-1803 (2008). https://doi.org/10.1016/j.catcom.2008.01.023
  9. Jie, Y., Dinghua, Y., Peng, S., and Huang, H., "Alkaline earth metal modified NaY for lactic acid dehydration to acrylic acid: effect of basic sites on the catalytic performance," Chinese J. Catal., 32(3-4), 405-411 (2011). https://doi.org/10.1016/S1872-2067(10)60188-X
  10. Friend, C. M., and Xu, B., "Heterogeneous catalysis: a central science for a sustainable future," Acc. Chem. Res., 50(3), 517-521 (2017). https://doi.org/10.1021/acs.accounts.6b00510
  11. Sun, P., Yu, D., Fu, K., Gu, M., Wang, Y., Huang, H., and Ying, H., "Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid," Catal. Commun., 10(9), 1345-1349 (2009). https://doi.org/10.1016/j.catcom.2009.02.019
  12. Peng, J., Li, X., Tang, C., and Bai, W., "Barium sulphate catalyzed dehydration of lactic acid to acrylic acid," Green Chem., 16(1), 108-111 (2014).
  13. Murphy, B. M., Letterio, M. P., and Xu, B., "Catalytic dehydration of methyl lactate: Reaction mechanism and selectivity control," J. Catal., 339, 21-30 (2016). https://doi.org/10.1016/j.jcat.2016.03.026
  14. Murphy, B. M., Letterio, M. P., and Xu, B. "Catalyst deactivation in pyridine-assisted selective dehydration of methyl lactate on NaY," ACS Catal., 7(3), 1912-1930 (2017). https://doi.org/10.1021/acscatal.6b03166
  15. Murphy, B. M., Letterio, M. P., and Xu, B., "Selectivity Control in the Catalytic Dehydration of Methyl Lactate: The Effect of Pyridine," ACS Catal., 6(8), 5117-5131 (2016). https://doi.org/10.1021/acscatal.6b00723
  16. Gilles, F., Blin, J.-L., Toufar, H., Briend, M., and Su, B.-L. "Double interactions between ammonia and a series of alkali-exchanged faujasite zeolites evidenced by FT-IR and TPD-MS techniques," Colloids and Surfaces A: Phy. Eng. Aspects, 241(1-3), 245-252 (2004). https://doi.org/10.1016/j.colsurfa.2004.04.017
  17. Lari, G. M., Puertolas, B., Frei, M. S., Mondelli, C., and Pere Ramirez, J., "Hierarchical NaY zeolites for lactic acid dehydration to acrylic acid," ChemCatChem, 8(8), 1507-1514 (2016). https://doi.org/10.1002/cctc.201600102
  18. Nafe, G., Lopez-Martinez, M.-A., Dyballa, M., Hunger, M., Traa, Y., Hirth, T., and Klemm, E., "Deactivation behavior of alkali-metal zeolites in the dehydration of lactic acid to acrylic acid," J. Catal., 329, 413-424 (2015). https://doi.org/10.1016/j.jcat.2015.05.017
  19. Zhang, L., Theng, D. S., Du, Y., Xi, S., Huang, L., Gao, F., Wang, C., Chen, L., and Borgna, A., "Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites," Catal. Sci. Technol., 7(24), 6101-6111 (2017). https://doi.org/10.1039/C7CY02142A