Browse > Article

Neuroprotective Activity of Phytosterols Isolated from Artemisia apiacea  

Lee, Jiwoo (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Weon, Jin Bae (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Publication Information
Korean Journal of Pharmacognosy / v.45, no.3, 2014 , pp. 214-219 More about this Journal
Abstract
Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia including China, Korea, and Japan. In this study, the three phytosterol constituents were isolated and identified from the hexane fraction of 80% aqueous methanol extract of A. apiacea. Compounds were isolated using open column chromatography (silica gel). Their chemical structures were also established using $^1H$-NMR and $^{13}C$-NMR. Moreover, neuroprotective activity of each compound against glutamate-induced neurotoxicity in hippocampal HT-22 cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Inhibition of reactive oxygen species (ROS) and calcium ion ($Ca^{2+}$) accumulation were measured for elucidation of neuroprotective mechanism of isolated compounds. They showed that stigmasterol had neuroprotective activity against the glutamate-induced toxicity by inhibition of ROS and $Ca^{2+}$ production. In conclusion, isolated compound of A. apiacea might be useful for therapeutic agent against neurodegenerative diseases.
Keywords
Artemisia apiacea; Neuroprotective activity; Reactive oxygen species (ROS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Christen, Y. (2000) Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71: 621S-629S.   DOI
2 Halliwell, B. (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs & Aging 18: 685-716.
3 Emerit, J., Edeas, M. and Bricaire, F. (2004) Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58: 39-46.   DOI   ScienceOn
4 Choi, D. W. (1992) Excitotoxic cell death. J. Neurochem. 23: 1261-1276.
5 Jin, D. Q., Lim, C. S., Hwang, J. K., Ha, I. and Han, J. S. (2005) Anti-oxidant and anti-inflammatory activities of macelignan in murine hippocampal cell line and primary culture of rat microglial cells. Biochem. Biophys. Res. Commun. 331: 1264-1269.   DOI   ScienceOn
6 Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695.   DOI   ScienceOn
7 Tan, S., Wood, M. and Maher, P. (1998) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71: 95-105.
8 Jiang, W. Y. (2005) Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol. Sci. 26: 558-563.   DOI   ScienceOn
9 Bent, S. (2008) Herbal medicine in the United States: review of efficacy, safety, and regulation. J. Gen. Intern. Med. 23: 854-859.   DOI   ScienceOn
10 Fabio, F. and Luigi, G. (2007) Herbal medicine today: clinical and research issues. Evid. Based Complement. Alternat. Med. 4: 37-40.   DOI
11 Yook, C. S. (1989) Coloured medicinal plants of Korea. 522. Printed by academy, Seoul.
12 Kim, O. C. and Jang, H. J. (1994) Volatile components of Artemisia apiacea herba. Agr. Chem. Biotechnol. 37: 37-42.
13 Tan, R. X., Zheng, W. F. and Tang, H. Q. (1998) Biologically active substances from the genus Artemisia. Planta Med. 64: 295-302.   DOI   ScienceOn
14 Hsu, E. (2006) Reflections on the 'discovery' of the antimalarial qinghao. Br. J. Clin. Pharmacol. 61: 666-670.   DOI
15 Kim, K. S., Shim, S. H., Jang, J. M., Cheong, J. H. and Kim, B. K. (1999) A study on hair-growth activity of Artemisia apiacea Hance. J. Pharm. Soc. Korea 43: 798-801.
16 Kim, K. S., Lee, S., Lee, Y. S., Jung, S. H., Park, Y., Shin, K. H. and Kim, B.-K. (2003) Anti-oxidant activities of the extracts from the herbs of Artemisia apiacea. J. Ethnopharmacol. 85: 69-72.   DOI   ScienceOn
17 Shimomura, H., Sashida, Y. and Ohshima, Y. (1979) Coumarins from Artemisia apiacea. Phytochem. 18: 1761-1762.   DOI   ScienceOn
18 Shimomura, H., Sashida, Y. and Ohshima, Y. (1980a) The chemical components of Artemisia apiacea Hance, more coumarins from the flower heads. Chem. Pharm. Bull. 28: 347-348.   DOI
19 Shimomura, H., Sashida, Y., Ohshima, Y., Azuma, T. and Saitoh, M. (1980b) The chemical components of Artemisia apiacea Hance, components of stems and leaves. Yakugaku Zasshi 100: 1164-1166.   DOI
20 Yano, K. (1970) Mono- and sesqui-terpenes of the essential oils from Artemisia japonica and Artemisia apiacea. Flavour Ind. 1: 328-330.
21 Lee, S., Kim, K. S., Jang, J. M., Park, Y., Kim, Y. B. and Kim, B.-K. (2002) Phytochemical constituents from the herba of Artemisia apiacea. Arch. Pharm. Res. 25: 285-288.   DOI
22 Lee, S., Kim, K. S., Shim, S. H., Park, Y. M. and Kim, B.-K. (2003) Constituents from the non-polar fraction of Artemisia apiacea. Arch. Pharm. Res. 26: 902-905.   DOI
23 Lee, S.-J., Kim, H. M., Lee, J. M., Park, H. S. and Lee, S. (2008) Artemisterol, a new steryl ester from the whole plant of Artemisia apiacea. J. Asian Nat. Prod. Res. 10: 281-283.   DOI
24 Chaturvedula, V. S. P. and Prakash, I. (2012) Isolation of stigmasterol and $\beta$-sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 1: 239-242.
25 Rajput, A. P. and Rajput, T. A. (2012) Isolation of stigmasterol and $\beta$-sitosterol from chloroform extract of leaves of Corchorus fascicularis Lam. Int. J. Biol. Chem. 6: 130-135.   DOI
26 Yoo, J. S., Ahn, E. M., Bang, M. H., Song, M. C., Yang, H. J., Kim, D. H., Lee, D. Y., Chung, H. G., Jeong, T. S., Lee, K. T., Choi, M. S. and Baek, N. I. (2006) Steroids from the aerial parts of Artemisia princeps Pampanini. Korean J. Medicinal Crop. Sci. 14: 273-277.
27 Jain, P. S. and Bari, S. B. (2010) Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of Wrightia tinctoria. Asian J. Plant Sci. 9: 163-167.   DOI
28 Lee, J. H., Kim, D. H., Bang, M. H., Yang, H. J., Bang, S. H., Chung, I. S., Kwon, B. M., Kim, S. H., Kim, D. K., Park, M. H. and Baek, N. I. (2005) Isolation of sterols from the methanol extracts of Cymbidium goeringii REICHB. fil. J. Korean Soc. Appl. Biol. Chem. 48: 263-266.
29 Brimson, J. M., Brimson, S. J., Brimson, C. A., Rakkhitawatthana, V. and Tencomnao, T. (2012) Rhinacanthus nasutus extracts prevent glutamate and amyloid-$\beta$ neurotoxicity in HT-22 mouse hippocampal cells: possible active compounds include lupeol, stigmasterol and $\beta$-sitosterol. Int. J. Mol. Sci. 13: 5074-5097.   DOI
30 Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., Scarpa, R. C., Cuajungco, M. P., Gray, D. N., Lim, J., Moir, R. D., Tanzi, R. E. and Bush, A. I. (1999) The A$\beta$ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochem. 38: 7609-7616.   DOI   ScienceOn
31 Ha, J. S. and Park, S. S. (2006) Glutamate-induced oxidative stress, but not cell death, is largely dependent upon extracellular calcium in mouse neuronal HT22 cells. Neurosci. Lett. 393: 165-169.   DOI