DOI QR코드

DOI QR Code

이산화탄소 압력순환흡착을 위한 칼슘 이온교환 Y 제올라이트의 작업용량과 선택계수 향상

Enhancement of the Working Capacity and Selectivity Factor of Calcium-Exchanged Y Zeolites for Carbon Dioxide Pressure Swing Adsorption

  • 김문현 (대구대학교 공과대학 환경공학과)
  • Kim, Moon Hyeon (Department of Environmental Engineering, Daegu University)
  • 투고 : 2017.10.16
  • 심사 : 2017.10.29
  • 발행 : 2018.03.30

초록

$25^{\circ}C$에서 $CO_2$ 흡착을 위한 작업용량과 $CO_2/CO$ 선택계수를 현저하게 향상시키기 위하여 서로 다른 전하와 이온반경을 갖는 $Na^+$, $N^+$, $Ca^{2+}$$Cu^{2+}$로 이온교환된 Y 제올라이트들이 연구되었다. 매우 소량인 0.012% $Ca^{2+}$로 이온교환된 NaY는 7회의 반복적인 $CO_2$ 흡착/탈착 싸이클 동안에도 완전히 가역적이었으므로 기존에 보고된 것들과는 달리 표면에 카보네이트는 생성되지 않는 것으로 생각된다. 4 bar 이상에서 2.00% CaY, 1.60% CuY와 1.87% LiY 모두 NaY와 매우 유사한 $CO_2$ 흡착성능을 보였다할지라도 그보다 낮은 압력에서는 이들의 흡착능은 감소하였고 그 정도는 금속이온들의 종류에 의존하였다. 0.5 ~ 2.5 bar에서 $CO_2$ 흡착성능은 NaY > 1.60% CuY > 2.00% CaY > 1.87% LiY의 순으로 나타났는데, 이들 모두 동일한 faujasite 골격과 약 2.6의 Si/Al 비율을 가지므로 골격, 골격조성, 유효세공크기와 채널구조에 있어서 차이는 없기 때문에 약한 루이스산의 특성을 갖는 $CO_2$의 구별되는 흡착거동은 이온교환에 따른 국부염기도와 흡착 포텐셜 에너지의 변화 때문일 것이다. $CO_2$ 흡착과는 다른 경향성이 CO 흡착에서 나타났고 이는 보다 약한 사극자 상호작용 때문이다. 0.012 ~ 5.23% Ca 함량을 갖는 Y 제올라이트에 $CO_2$와 CO 흡착 시 Ca 함량에 따른 현저한 의존성이 존재하였는데 0.05% 이하에서 $CO_2$ 흡착능은 증가한 반면에 그 이상에서는 감소하였다. 이러한 경향에도 불구하고 Ca 함량의 증가와 함께 작업용량과 $CO_2/CO$ 선택계수는 현저히 증가하였고, 5.23% CaY의 경우 작업용량은 $2.37mmol\;g^{-1}$, 선택계수는 4.37이었는데 본 연구에서 얻어진 작업용량은 문헌에 보고된 벤치마크와 유사한 수준이었다.

Y zeolites with different extra-framework cations, such as $Na^+$, $N^+$, $Ca^{2+}$, and $Cu^{2+}$, with different charge and ionic radius have been investigated to greatly enhance a working capacity (W) of $CO_2$ adsorption at $25^{\circ}C$ and a $CO_2/CO$ selectivity factor (S). A sample of NaY with a very small amount of 0.012% $Ca^{2+}$ was fully reversible for seven times repeated $CO_2$ adsorption/desorption cycles, thereby forming no surface carbonates unlikely earlier reports. Although at pressures above 4 bar, 2.00% CaY, 1.60% CuY and 1.87% LiY all showed a $CO_2$ adsorption very similar to that measured for NaY, they gave a significant decrease in the adsorption at lower pressures, depending on the metal ion. At 0.5 ~ 2.5 bar, the extent of $CO_2$ adsorption was in the order NaY > 1.60% CuY > 2.00% CaY > 1.87% LiY. All the $Na^+-based$ metals-exchanged zeolites have a FAU (faujasite) framework and a Si/Al value near 2.6; thus, there is no discernible difference in the framework topology, framework chemical compositions, effective aperture size, and channel structure between the zeolite samples. Therefore, the distinctive behavior in the adsorption of $CO_2$ with a character as a weak Lewis acid is associated with the site basicity of the zeolites, and the interaction potentials of the cations. Different trend was shown for a CO adsorption due to weaker quadrupole interactions. Adsorption of $CO_2$ and CO on samples of CaY with 0.012 to 5.23% Ca disclosed a significant dependence on the Ca loading. The $CO_2$ adsorption increased when the cation exists up to ca. 0.05%, while it decreased at higher Ca amounts. However, values for both W and S could greatly increase as the bare zeolite is enriched by $Ca^{2+}$ ions. The 5.23% CaY had $W=2.37mmol\;g^{-1}$ and S = 4.37, and the former value was comparable to a benchmark reported in the literature.

키워드

참고문헌

  1. D'Alessandro, D. M., Smit, B., and Long, J. R., "Carbon Dioxide Capture: Prospects for New Materials," Angew. Chem. Int. Ed., 49, 6058-6082 (2010). https://doi.org/10.1002/anie.201000431
  2. Li, J. R., Kuppler, R. J., and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-Organic Frameworks," Chem. Soc. Rev., 38, 1477-1504 (2009). https://doi.org/10.1039/b802426j
  3. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T., "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57, 603-619 (1985). https://doi.org/10.1351/pac198557040603
  4. Barthomeuf, D., "Framework Induced Basicity in Zeolites," Microporous Mesoporous Mater., 66, 1-14 (2003). https://doi.org/10.1016/j.micromeso.2003.08.006
  5. Krishna, R., and van Baten, J. M., "A Comparison of the $CO_2$ Capture Characteristics of Zeolites and Metal-Organic Frameworks," Sep. Purif. Technol., 87, 120-126 (2012). https://doi.org/10.1016/j.seppur.2011.11.031
  6. Kim, M. H., Cho, I. H., Park, J. H., Choi, S. O., and Lee, I. S., "Adsorption of $CO_2$ and CO on H-zeolites with Different Framework Topologies and Chemical Compositions and a Correlation to Probing Protonic Sites Using $NH_3$ Adsorption," J. Porous Mater., 23, 291-299 (2016). https://doi.org/10.1007/s10934-015-0081-z
  7. Bennett, A., "Water Processes and Production: High and Ultra-High Purity Water," Filtr. Sep., 46, 24-27 (2009).
  8. Zhang, J., Singh, R., and Webley, P. A., "Alkali and Alkaline-Earth Cation Exchanged Chabazite Zeolites for Adsorption Based $CO_2$ Capture," Microporous Mesoporous Mater., 111, 478-487 (2008). https://doi.org/10.1016/j.micromeso.2007.08.022
  9. Maurin, G., Belmabkhout, Y., Pirngruber, G., Gaberova, L., and Llewellyn, P., "$CO_2$ Adsorption in LiY and NaY at High Temperature: Molecular Simulations Compared to Experiments," Adsorption, 13, 453-460 (2007). https://doi.org/10.1007/s10450-007-9038-0
  10. Kim, M. H., Ebner, J. R., Friedman, R. M., and Vannice, M. A., "Determination of Metal Dispersion and Surface Composition in Supported Cu-Pt Catalysts," J. Catal., 208, 381-392 (2002). https://doi.org/10.1006/jcat.2002.3569
  11. Kim, M. H., Cho, I. H., Choi, S. O., and Lee, I. S., "Surface Energetic Heterogeneity of Nanoporous Solids for $CO_2$ and CO Adsorption: The Key to an Adsorption Capacity and Selectivity at Low Pressures," J. Nanosci. Nanotechnol., 16, 4474-4479 (2016). https://doi.org/10.1166/jnn.2016.11000
  12. Kim, M. H., Cho, I. H., Choi, S. O., and Choo, S. T., "Zeolites: Their Features as Pressure Swing Adsorbents and $CO_2$ Adsorption Capacity," J. Environ. Sci. Int., 23, 943-962 (2014). https://doi.org/10.5322/JESI.2014.5.943
  13. Yang, R. T., Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 1-410 (2003).
  14. Schoonheydt, R. A., Geerlings, P., Pidko, E. A., and van Santen, R. A., "The Framework Basicity of Zeolites," J. Mater. Chem., 22, 18705-18717 (2012). https://doi.org/10.1039/c2jm31366a
  15. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., and Liu, J., "Progress in Adsorption-Based $CO_2$ Capture by Metal-Organic Frameworks," Chem. Soc. Rev., 41, 2308-2322 (2012). https://doi.org/10.1039/C1CS15221A
  16. Tagliabue, M., Rizzo, C., Onorati, N. B., Gambarotta, E. F., Carati, A., and Bazzano, F., "Regenerability of Zeolites as Adsorbents for Natural Gas Sweetening: A Case-Study," Fuel, 93, 238-244 (2012). https://doi.org/10.1016/j.fuel.2011.08.051
  17. Shannon, R. D., "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr. A, 32, 751-767 (1976). https://doi.org/10.1107/S0567739476001551
  18. Maurin, G., Llewellyn, P., Poyet, T., and Kuchta, B., "Influence of Extra-Framework Cations on the Adsorption Properties of X-Faujasite Systems: Microcalorimetry and Molecular Simulations," J. Phys. Chem. B, 109, 125-129 (2005). https://doi.org/10.1021/jp0461753
  19. Barrer, R. M., and Gibbons, R. M., "Zeolitic Carbon Dioxide: Energetics and Equilibria in Relation to Exchangeable Cations in Faujasite," Trans. Faraday Soc., 61, 948-961 (1965). https://doi.org/10.1039/tf9656100948
  20. Ridha, F. N., Yang, Y. X., and Webley, P. A., "Adsorption Characteristics of a Fully Exchanged Potassium Chabazite Zeolite Prepared from Decomposition of Zeolite Y," Microporous Mesoporous Mater., 117, 497-507 (2009). https://doi.org/10.1016/j.micromeso.2008.07.034
  21. Pirngruber, G. D., Raybaud, P., Belmabkhout, Y., Cejka, J., and Zukal, A., "The Role of the Extra-Framework Cations in the Adsorption of $CO_2$ on Faujasite Y," Phys. Chem. Chem. Phys., 12, 13534-13546 (2010). https://doi.org/10.1039/b927476f
  22. Forano, C., Slade, R. C. T., Andersen, E. K., Andersen, I. G. K., and Prince, E. "Neutron Diffraction Determination of Full Structures of Anhydrous Li-X and Li-Y Zeolites," J. Solid State Chem., 82, 95-102 (1989). https://doi.org/10.1016/0022-4596(89)90227-2
  23. Grimes, N. W., and Grimes, R. W., "Dielectric Polarizability of Ions and the Corresponding Effective Number of Electrons," J. Phys. Condens. Matter, 10, 3029-3034 (1998). https://doi.org/10.1088/0953-8984/10/13/019
  24. Masuda, T., Tsutsumi, K., and Takahashi, H., "Infrared and Calorimetric Studies of Adsorbed Carbon Dioxide on NaA and CaNaA Zeolites," J. Colloid Interface Sci., 77, 232-237 (1980). https://doi.org/10.1016/0021-9797(80)90435-X
  25. Palomino, M., Corma, A., Jorda, J. L., Rey, F., and Valencia, S., "Zeolite Rho: a Highly Selective Adsorbent for $CO_2$/$CH_4$ Separation Induced by a Structural Phase Modification," Chem. Commun., 48, 215-217 (2012). https://doi.org/10.1039/C1CC16320E
  26. Michelena, J. A., Vansant, E. F., and de Bievre, P., "Interaction Energy Calculations in Zeolites. Part II. The Interaction Energy of Ar, CO and $CO_2$ Molecules Adsorbed in the Zeolites NaY and CaY," Recl. Trav. Chim. Pays-Bas, 97, 170-174 (1978).
  27. Katoh, M., Yoshikawa, T., Katayama, K., and Tomida T., "Adsorption Characteristics of Ion-Exchanged ZSM-5 Zeolites for $CO_2$/$N_2$ Mixtures," J. Colloid Interface Sci., 226, 145-150 (2000). https://doi.org/10.1006/jcis.2000.6795
  28. Aguilar-Armenta, G., Hernandez-Ramirez, G., Flores-Loyola, E., Ugarte-Castaneda, A., Silva-Gonzalez, R., Tabares-Munoz, C., Jimenez-Lopez, A., and Rodriguez-Castellon, E., "Adsorption Kinetics of $CO_2$, $O_2$, $N_2$, and $CH_4$ in Cation-Exchanged Clinoptilolite," J. Phys. Chem. B, 105, 1313-1319 (2001). https://doi.org/10.1021/jp9934331
  29. Kim, M. H., Choi, S. O., and Choo, S. T., "Capability of $CO_2$ on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications," Clean Technol., 19, 370-378 (2013). https://doi.org/10.7464/ksct.2013.19.4.370
  30. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., and Mirodatos, C., "Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay," Chem. Eng. J., 155, 553-566 (2009). https://doi.org/10.1016/j.cej.2009.09.010
  31. Khvoshchev, S. S., and Zverev, A. V., "Calorimetric Study of $NH_3$ and $CO_2$ Adsorption on Synthetic Faujasites with $Ca^{2+}$, $Mg^{2+}$, and $La^{3+}$ Cations," J. Colloid Interface Sci., 144, 571-578 (1991). https://doi.org/10.1016/0021-9797(91)90422-5
  32. Akten, E. D., Siriwardane, R. V., and Sholl, D. S., "Monte Carlo Simulation of Single- and Binary Component Adsorption of $CO_2$, $N_2$, and $H_2$ in Zeolite Na-4A," Energy Fuel, 17, 977-983 (2003). https://doi.org/10.1021/ef0300038
  33. Miyamoto, M., Fujioka, Y., and Yogo, K., "Pure Silica CHA Type Zeolite for $CO_2$ Separation using Pressure Swing Adsorption at High Pressure," J. Mater. Chem., 22, 20186-20189 (2012). https://doi.org/10.1039/c2jm34597h
  34. Sircar, S., "Basic Research Needs for Design of Adsorptive Gas Separation Processes," Ind. Eng. Chem. Res., 45, 5435- 5448 (2006). https://doi.org/10.1021/ie051056a