Browse > Article
http://dx.doi.org/10.1016/j.net.2021.08.002

The effect of UV-C irradiation and EDTA on the uptake of Co2+ by antimony oxide in the presence and absence of competing cations Ca2+ and Ni2+  

Malinen, Leena (Department of Chemistry, Radiochemistry Unit, University of Helsinki)
Repo, Eveliina (Department of Separation Science, School of Engineering Science, LUT University)
Harjula, Risto (Department of Chemistry, Radiochemistry Unit, University of Helsinki)
Huittinen, Nina (Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology)
Publication Information
Nuclear Engineering and Technology / v.54, no.2, 2022 , pp. 627-636 More about this Journal
Abstract
In nuclear power plants and other nuclear facilities the removal of cobalt from radioactive liquid waste is needed to reduce the radioactivity concentration in effluents. In liquid wastes containing strong organic complexing agents such as EDTA cobalt removal can be problematic due to the high stability of the Co-EDTA complex. In this study, the removal of cobalt from NaNO3 solutions using antimony oxide (Sb2O3) synthesized from potassium hexahydroxoantimonate was investigated in the absence and presence of EDTA. The uptake studies on the ion exchange material were conducted both in the dark (absence of UV-light) and under UV-C irradiation. Ca2+ or Ni2+ were included in the experiments as competing cations to test the selectivity of the ion exchanger. Results show that UV-C irradiation noticeably enhances the cobalt sorption efficiency on the antimony oxide. It was shown that nickel decreased the sorption of cobalt to a higher extent than calcium. Finally, the sorption data collected for Co2+ on antimony oxide was modeled using six different isotherm models. The Sips model was found to be the most suitable model to describe the sorption process. The Dubinin-Radushkevich model was further used to calculate the adsorption energy, which was found to be 6.2 kJ mol-1.
Keywords
Cobalt; EDTA; Sorption; Antimony oxide; UV-C; Competing cations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.S. Krishna, D.S.R. Murty, B.S. Prakash Jai, Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay, J. Colloid Interface Sci. 229 (2000) 230-236.   DOI
2 G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tong, Y. Li, A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation, Nanoscale 5 (2013) 4129-4133.   DOI
3 B. Beverskog, I. Puigdomenech, Revised Pourbaix diagrams for nickel at 25-300℃, Corrosion Sci. 39 (1997) 969-980.   DOI
4 M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard Mater. 141 (2007) 77-85.   DOI
5 A.B. Perez-Marin, V. Meseguer Zapata, J.F. Ortu no, M. Aguilar, J. Saez, M. Llorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard Mater. 139 (1) (2007) 122-131.   DOI
6 J. Chen, Z. Chen, X. Zhang, X. Li, L. Yu, D. Li, Antimony oxide hydrate (Sb2O5$3H2O) as a simple and high efficient photocatalyst for oxidation of benzene, Appl. Catal. B Environ. 210 (2017) 379-385.   DOI
7 L. Malinen, R. Koivula, R. Harjula, Removal of cobalt from aqueous solution containing EDTA under UV-C irradiation by antimony oxide, Radiochim. Acta 104 (6) (2016) 415-422.   DOI
8 The Lund/LBNL nuclear data search, 28th April, 2019, www.nucleardata.nuclear.lu.se/toi/.
9 W.D. Samuels, D.M. Camaioni, H. Babad, Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex. In: Proceedings of Waste Management'94: Working towards a Cleaner Environment, Tucson, AZ, United States, 27 Feb - 3 Mar 1994.
10 S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm model for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2) (2004) 322-333.   DOI
11 K. Vijayraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard Mater. 133 (1) (2006) 304-308.   DOI
12 K.G. Karthikeyan, M.A. Tshabalala, D. Wang, M. Kalbasi, Solution chemistry effects on orthophosphate adsorption by cationized wood residues, Environ. Sci. Technol. 38 (2004) 904-911.   DOI
13 D.G. Kinniburgh, General purpose adsorption isotherms, Environ. Sci. Technol. 20 (1986) 895-904.   DOI
14 M. Abe, T. Itoh, Synthetic inorganic ion exchange materials XXV. Change in the ion-exchange selectivity by thermal treatment of crystalline antimonic(V) acid toward alkali metal ions, J. Inorg. Nucl. Chem. 42 (1980) 1641-1644.   DOI
15 A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena, Pure Appl. Chem. 77 (10) (2005) 1753-1805.   DOI
16 J.P. Gustafsson, Visual Minteq 3.0, a free equilibrium speciation model, accessed 28th April, 2019), http://vminteq.lwr.kth.se/.
17 F.G. Kari, W. Giger, Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt, Environ. Sci. Technol. 29 (1995) 2814-2827.   DOI
18 L.K. Malinen, R. Koivula, R. Harjula, Removal of radiocobalt from EDTA-complexes using oxidation and selective ion exchange, Water Sci. Technol. 60 (2009) 1097-1101.   DOI
19 J.S. Fritz, G.H. Schenk, in: Quantitative Analytical Chemistry, fifth ed., Prentice Hall, New Jersey, USA, 1987.
20 H.G. Langer, Solid complexes with tetravalent metal ions and ethylenediamine tetra-acetic acid (EDTA), J. Inorg. Nucl. Chem. 26 (1964) 59-72.   DOI
21 S. Metsarinne, T. Tuhkanen, R. Aksela, Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range, Chemosphere 45 (2001) 949-955.   DOI
22 H.B. Lockhart, R.V. Blakeley, Aerobic photodegradation of Fe(III)-(ethylenedinitrilo)tetraacetate (ferric EDTA), Environ. Sci. Technol. 9 (1975) 1035-1038.   DOI
23 K. Rekab, C. Lepeytre, F. Goettmann, M. Dunand, C. Guillard, J.-M. Herrmann, Degradation of a cobalt(II)-EDTA complex by photocatalysis and H2O2/UV-C, Application to nuclear wastes containing 60Co, J. Radioanal. Nucl. Chem. 303 (2015) 131-137.   DOI
24 R. Harjula, J. Lehto, A. Paajanen, L. Brodkin, E. Tusa, Testing of highly selective CoTreat ion exchange media for the removal of radiocobalt and other activated corrosion product nuclides from NPP waste waters. In: Proceedings of Waste Management, Tucson, AZ, United States, 28 Feb - 4 Mar 1999.
25 R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. B25 (1969) 925-946.
26 M. Abe, K. Kasai, Synthetic inorganic ion-exchange materials. XXII. Distribution coefficients and possible separation of transition metals on crystalline antimonic(V) acid as a cation exchanger, Separ. Sci. Technol. 14 (1979) 895-907.   DOI
27 A.A. Khan, M.M. Alam, New and novel organic-inorganic type crystalline polypyrrolel/polyantimonic acid' composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode, An. Chim. Acta 504 (2004) 253-264.   DOI
28 K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherms systems, Chem. Eng. J. 150 (1) (2010) 2-10.
29 M. Abe, Oxides and hydrous oxides of multivalent metals as inorganic ion exchangers, in: A. Clearfield A (Ed.), Inorganic Ion Exchange Materials, first ed., CRC Press, Florida, 1982, pp. 161-246.
30 M. Abe, K. Sudoh, Synthetic inorganic ion-exchange materials. XXIII. Ion-exchange equilibria of transition metals and hydrogen ions on crystalline antimonic(V) acid, J. Inorg. Nucl. Chem. 42 (1980) 1051-1055.   DOI
31 A.E. Martell, R.M. Smith, Critical Stability Constants, 3, Plenum, New York, 1977.
32 J.M. Zachara, S. Smith, J.K. Fredrickson, The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA2- to goethite and a subsurface sediment, Geochem. Cosmochim. Acta 64 (8) (2000) 1345-1362.   DOI
33 D.R. Eaton, S.R. Suart, Electron spin resonance studies of the photooxidation and reduction of cobalt complexes, J. Phys. Chem. 72 (2) (1968) 400-405.   DOI
34 M. Abe, Ion exchange selectivities of crystalline antimonic acid, in: P.A. Williams, M.J. Hudson (Eds.), Recent Developments of Ion Exchange: Proceedings of the International Conference on Ion Exchange Processes (IONEX '87): the North East Wales Institute of Higher Education, Elsevier Applied Science, UK, London and New York, 1987, pp. 277-290.
35 L.H. Baetsle, D. Huys, Structure and ion exchange characteristics of polyantimonic acid, J. Inorg. Nucl. Chem. 30 (1968) 639-649.   DOI
36 V.J. Inglezakis, A.A. Zorpas, Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems, Desal. Water Treat. 39 (2012) 149-157.   DOI