• Title/Summary/Keyword: CT모델

Search Result 373, Processing Time 0.023 seconds

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

Quantitative Analysis Methods for Adapting Image J programs on Mouse Calvarial defected Model (Image J 프로그램을 사용한 마우스 두개골 결손모델상의 정량적인 분석방법)

  • Jung, Hongmoon;Won, Doyeon;Jung, Jaeeun
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.365-370
    • /
    • 2013
  • This mouse calvarial defected model is frequently used for new scaffold development in the bone regeneration. Most experiments are carried out in this way by measuring the bone regeneration of mouse calvaria defected area. As a next step, hematoxylin and eosin staining is analyzed by sacrificing mice On the other hand, the quantitative analysis for bone regeneration is carried out by micro computed tomography. However, there are several drawbacks with the micro computed tomography. That is, it takes a long time and it is quite expensive for bone regeneration quantitative analysis. This study was performed by simply measuring the quantity of bone regeneration in mouse clavaira defected area on two-dimensional digital x-ray images via Image J. Consequentially, this experimental method by using J program might help bio-technologist researcher regarding new bone regeneration by comparing the quantity of bone regeneration quickly and precisely as well.

Analysis on Correlation between AE Parameters and Stress Intensity Factor using Principal Component Regression and Artificial Neural Network (주성분 회귀분석 및 인공신경망을 이용한 AE변수와 응력확대계수와의 상관관계 해석)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Park, Phi-Iip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.80-90
    • /
    • 2001
  • The aim of this study is to develop the methodology which enables to identify the mechanical properties of element such as stress intensity factor by using the AE parameters. Considering the multivariate and nonlinear properties of AE parameters such as ringdown count, rise time, energy, event duration and peak amplitude from fatigue cracks of machine element the principal component regression(PCR) and artificial neural network(ANN) models for the estimation of stress intensity factor were developed and validated. The AE parameters were found to be very significant to estimate the stress intensity factor. Since the statistical values including correlation coefficients, standard mr of calibration, standard error of prediction and bias were stable, the PCR and ANN models for stress intensity factor were very robust. The performance of ANN model for unknown data of stress intensity factor was better than that of PCR model.

  • PDF

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF

Therapeutic Effects of Curdrania tricuspidata Leaf Extract on Osteoarthritis (골관절염 실험모델에서 꾸지뽕나무 추출물의 골관절염 억제효과 연구)

  • Nam, Da-Eun;Kim, Ok Kyung;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.5
    • /
    • pp.697-704
    • /
    • 2013
  • The inhibitory effect of ethanol extracts from Curdrania tricuspidata leaves (CTL) on osteoarthritis was investigated in primary cultured rat cartilage cells and a monosodium-iodoacetate (MIA)-induced arthritis rat model. To identify the effects of CTL 80% ethanol extracts (CTL80) and CTL 10% ethanol extracts (CTL10) against $H_2O_2$ treatment in vitro, cell survival was measured by the MTT assay. Cell survival after $H_2O_2$ treatment increased with CTL80 and CTL10 close to normal up to $300{\mu}g/mL\;H_2O_2$. The mRNA expression of matrix metalloproteinases (MMPs) was determined MMP-7 and MMP-13 (known catabolic factors), were significantly inhibited by CTL 80 and CTL10; a $200{\mu}g/mL$ dose of CTL80 especially decreased MMP-13 expression. In vivo, osteoarthritis was induced by an intra-articular injection of MIA into the knee joints of rats, then CTL80 and CTL10 orally administered daily for 35 days. After the animals were sacrificed, histological evaluations of their knee joints revealed a reduction in polymorphonuclear cell infiltration and smooth synovial lining in the CTL80-500 group. Micro-CT analysis of hind paws from CTL80-500 and CTL10 showed a protection against osteophyte formation, soft tissue swelling, and bone resorption. In conclusion, CTL ethanol extracts are effective in ameliorating joint destruction and cartilage erosion in MIA-induced rats. CTL decreases and normalizes articular cartilage through preventing extracellular matrix degradation and chondrocyte injury, and could potentially serve as a therapeutic treatment for humans.

Accuracy assessment of implant placement using a stereolithographic surgical guide made with digital scan (디지털 스캔을 이용하여 제작된 임플란트 수술가이드의 정확도)

  • Jeong, Seung-Mi;Fang, Jeong-Whan;Hwang, Chan-Hyeon;Kang, Se-Ha;Choi, Byung-Ho;Fang, Yiqin;Jeon, Hyongtae;An, Sunghun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • Purpose: The objective of this study was to evaluate the accuracy of a stereolithographic surgical guide that was made with information from intraoral digital impressions and cone beam CT (CBCT). Materials and methods: Six sets of resin maxilla and mandible models with missing teeth were used in this study. Intraoral digital impressions were made. The virtual models provided by these intraoral digital impressions and by the CBCT scan images of the resin models were used to create a surgical guide. Implant surgery was performed on the resin models using the surgical guide. After implant placement, the models were subjected to another CBCT scan to compare the planned and actual implant positions. Deviations in position, depth and axis between the planned and actual positions were measured for each implant. Results: The mean deviation of the insertion point and angulation were 0.28 mm and $0.26^{\circ}$, apex point were 0.11 mm and 0.14 mm respectively. The implants were situated at a mean of 0.44 mm coronal to the planned vertical position. Conclusion: This study demonstrates that stereolithographic surgical guides created without the use of impressions and stone models show promising accuracy in implant placement.

Application of 3D printer in dental clinic (치과 진료실에서 3D 프린트의 활용)

  • Kim, Hyun Dong
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.82-96
    • /
    • 2018
  • 3D printing is a process of producing 3d object from a digital file in STL format by joining, bonding, sintering or polymerizing small volume elements by layer. The various type of 3d printing is classified according to the additive manufacturing strategies. Among the types of 3D printer, SLA(StereoLithography Apparatus) and DLP(Digital Light Processing) 3D printer which use polymerization by light source are widely used in dental office. In the previous study, a full-arch scale 3d printed model is less precise than a conventional stone model. However, in scale of quadrant arch, a 3d printed model is significantly precise than a five-axis milled model. Using $3^{rd}$ Party dental CAD program, full denture, provisional crowns and diagnostic wax-up model are fabricated by 3d printer in dental office. In Orthodontics, based on virtual setup model, indirect bracket bonding tray can be generated by 3d printer. And thermoforming clear aligner can be fabricated on the 3d printed model. 3D printed individual drilling guide enable the clinician to place the dental implant on the proper position. The development of layer additive technology enhance the quality of 3d printing object and shorten the operating time of 3D printing. In the near future, traditional dental laboratory process such as casting, denture curing will be replaced by digital 3D printing.

The Detection of Intracranial Calcification by MR : Experimental Model (실험적 모델을 이용한 자기공명영상에서 석회화의 인지)

  • 박승진
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 1994
  • Purporse : It is known that detection of calcification by MRI is difficulty in intracranial calcified lesions, but author tried to evaluate the signal intensity image of calcification by MR with experimental model. Subjects & Methods : Author analyzed and compared with values of calcium carbonate and hydroxyapatite phantoms by each concentration (10, 20, 30, 40, 50%) and size(1-10mm), measured ROI attenuating from CT and MRI(TlWI & T2WI). Results : The high concentration of calcium carbonate is, the lower the signal intensity of calcium carbonate phantom is both T1 & T2WI. For concentration of Hydroxyapatite of up to 30% by weight the signal intensity on standard T1 weighted images increased but subsequently decreased. Hyperintensity does not preclude calcification as a cause of the signal alteration-an observation that all radiologists interpreting MR images need to be aware of. Conclusion: The signal intensity of intracranial calcification is various on MR imaging in concerning with components, concentration, & size of calcification, and especially high signal intensity of intracranial calcification noted differencial diagnosis.

  • PDF

The effect of Lycii radicis CORTEX extracts on the Rheumatoid arthritis related factors (지골피 추출물이 류마티스관절염 관련 매개체에 미치는 영향)

  • Jang, Ayeong;Seung, Otak;Lee, Myeongseon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1365-1372
    • /
    • 2019
  • The present study aimed to evaluate the effect of Lycii radicis CORTEX extract on rheumatoid related factors in CIA-induced Rheumatoid Arthritis model of DBA/1 mice. Lycii radicis CORTEX extract was administered orally at doses of 200 mg/kg/day for 4 weeks after direct injection of CIA into the mice' right paw. We evaluated the treatment effects based on serum biomarkers, morphological and histopathological analyses of the paw. Compared with those in control mice, the Lycii radicis CORTEX extract treatments significantly reduced the serum concentration of cytokine, kemokine and immunoglobulin levels. In addition, the Lycii radicis CORTEX extract treatments effectively preserved the paw bone joint, that in the H&E staining and masson-trichrome staining showed that there were histopathological improvements in Lycii radicis CORTEX extract treated group compared to those of control group. The results indicate that Lycii radicis CORTEX extract alleviated rheumatoid arthritis symptoms. Thus, Lycii radicis CORTEX extract may be a novel therapeutic option for the management of rheumatoid arthritis.

Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model (순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석)

  • Yun Sang-Seok;Jung Sang-Ki;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.