• Title/Summary/Keyword: CRISPR/Cas9

Search Result 141, Processing Time 0.026 seconds

Cadmium chloride down-regulates the expression of Rad51 in HC11 cells and reduces knock-in efficiency

  • Ga-Yeon Kim;Man-Jong Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.99-108
    • /
    • 2023
  • Background: Efficient gene editing technology is needed for successful knock-in. Homologous recombination (HR) is a major double-strand break repair pathway that can be utilized for accurately inserting foreign genes into the genome. HR occurs during the S/G2 phase, and the DNA mismatch repair (MMR) pathway is inextricably linked to HR to maintain HR fidelity. This study was conducted to investigate the effect of inhibiting MMR-related genes using CdCl2, an MMR-related gene inhibitor, on HR efficiency in HC11 cells. Methods: The mRNA and protein expression levels of MMR-related genes (Msh2, Msh3, Msh6, Mlh1, Pms2), the HR-related gene Rad51, and the NHEJ-related gene DNA Ligase IV were assessed in HC11 cells treated with 10 μM of CdCl2 for 48 hours. In addition, HC11 cells were transfected with a CRISPR/sgRNA expression vector and a knock-in vector targeting Exon3 of the mouse-beta casein locus, and treated with 10 μM cadmium for 48 hours. The knock-in efficiency was monitored through PCR. Results: The treatment of HC11 cells with a high-dose of CdCl2 decreased the mRNA expression of the HR-related gene Rad51 in HC11 cells. In addition, the inhibition of MMR-related genes through CdCl2 treatment did not lead to an increase in knock-in efficiency. Conclusions: The inhibition of MMR-related gene expression through high-dose CdCl2 treatment reduces the expression of the HR-related gene Rad51, which is active during recombination. Therefore, it was determined that CdCl2 is an inappropriate compound for improving HR efficiency.

The Inhibitory Effect of NLRP3 Deficiency in Hepatocellular Carcinoma SK-Hep1 Cells

  • Choi, Wonhyeok;Cho, Hyosun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • The NLRP3 (nucleotide-binding domain, leucine-rich repeat family pyrin domain containing 3) inflammasome plays an important role in the initiation of inflammatory responses, through the recognition of pathogen-associated molecular patterns and tumor progression, including tumor growth and metastasis. In this study, we examined the effects of defective NLRP3 on the growth, migration, and invasiveness of hepatocellular carcinoma (HCC) SK-Hep1 cell. First, HCC SK-Hep1 cells were transfected with human NLRP3 targeting LentiCRISPRv2 vector using the CRISPR-Cas9 system, and NLRP3 deficiency was confirmed by RT-qPCR and western blotting. NLRP3 deficient SK-Hep1 cells showed delayed cell growth and decreased protein expression of PI3K, p-AKT, and pNF-κB when compared to NLRP3 complete SK-Hep1 cells. In addition, NLRP3 deficiency arrested the cell cycle at G1 phase through an increase in p21 and a reduction in CDK6. NLRP3 deficient SK-Hep1 cells also showed significantly delayed cell migration, invasion, and wound healing. The expression of epithelial-mesenchymal transition signaling molecules, such as N-cadherin and MMP-9, was found to be dramatically decreased in NLRP3 deficient SK-Hep1 cells compared to NLRP3 complete SK-Hep1 cells.

Gene-Editing: Interpretation of Current Law and Legal Policy

  • Kim, Na-Kyoung
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.343-349
    • /
    • 2017
  • tWith the development of the third-generation gene scissors, CRISPR-Cas9, concerns are being raised about ethical and social repercussions of the new gene-editing technology. In this situation, this article explores the legislation and interpretation of the positive laws in South Korea. The BioAct does not specify and regulate 'gene editing' itself. However, assuming that genetic editing is used in the process of research and treatment, we can look to the specific details of the regulations for research on humans as well as gene therapy research in order to see how genetic editing is regulated under the BioAct. BioAct differentiates the regulation between (born) humans and embryos etc. and the regulation differ entirely in the manner and scope. Moreover, due to the fact that gene therapy products are regarded as drugs, they fall under different regulations. The Korean Pharmacopoeia Act put stringent sanctions on clinical trials for gene therapy products and the official Notification "Approval and Examination Regulations for Biological Products, etc." by Food and Drug Safety Administration may be applied to gene editing for gene therapy purposes.

An efficient gene targeting system using homologous recombination in plants (식물에서의 상동재조합을 이용한 효율적인 진타겟팅 시스템)

  • Kwon, Yong-Ik;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.154-160
    • /
    • 2015
  • The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitate efficient plant breeding without introducing foreign genes, in virtue by of gene editing technology. Gene targeting (GT) via homologous recombination (HR) is one of the best gene editing methods available to modify specific DNA sequences in genomes. GT utilizes DNA repair pathways. Thus, DNA repair systems are controlled to enhance HR processing. Engineered sequence specific endonucleases were applied to improve GT efficiency. Engineered sequence specific endonucleases like the zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), and CRISPR-Cas9 create DNA double-strand breaks (DSB) that can stimulate HR at a target site. RecQl4, Exo1 and Rad51 are effectors that enhance DSB repair via the HR pathway. This review focuses on recent developments in engineered sequence specific endonucleases and ways to improve the efficiency of GT via HR effectors in plants.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Delivery of Protein into Microalgae by the Digital Electroporation (디지털 전기천공을 이용한 미세조류 내 단백질 전달 연구)

  • Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • In the present study, we performed electroporation to deliver protein into microalgae using previously developed digital electroporation system. Green fluorescence protein was successfully delivered into a live microalgae cell nucleus without cell wall removal. By investigating the effects of applied voltage on the protein delivery efficiency, optimal electroporation electric field condition was found (960 V/cm). We also investigated the delivery of Yo-Pro-1 into cell to examine the size effects of delivered materials and found that there is little size effects on the optimal condition. Finally, the implications of the present results and future work are discussed.

A splice variant of human Bmal1 acts as a negative regulator of the molecular circadian clock

  • Lee, Jiwon;Park, Eonyoung;Kim, Ga Hye;Kwon, Ilmin;Kim, Kyungjin
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.6.1-6.10
    • /
    • 2018
  • Bmal1 is one of the key molecules that controls the mammalian molecular clock. In humans, two isoforms of Bmal1 are generated by alternative RNA splicing. Unlike the extensively studied hBmal1b, the canonical form of Bmal1 in most species, the expression and/or function of another human-specific isoform, hBmal1a, are poorly understood. Due to the lack of the N-terminal nuclear localization signal (NLS), hBMAL1a does not enter the nucleus as hBMAL1b does. However, despite the lack of the NLS, hBMAL1a still dimerizes with either hCLOCK or hBMAL1b and thereby promotes cytoplasmic retention or protein degradation, respectively. Consequently, hBMAL1a interferes with hCLOCK:hBMAL1b-induced transcriptional activation and the circadian oscillation of Period2. Moreover, when the expression of endogenous hBmal1a is aborted by CRISPR/Cas9-mediated knockout, the rhythmic expression of hPer2 and hBmal1b is restored in cultured HeLa cells. Together, these results suggest a role for hBMAL1a as a negative regulator of the mammalian molecular clock.

ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease

  • Jeong, Woojin;Lee, Hyein;Cho, Sukhee;Seo, Jinsoo
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.739-746
    • /
    • 2019
  • Significant knowledge about the pathophysiology of Alzheimer's disease (AD) has been gained in the last century; however, the understanding of its causes of onset remains limited. Late-onset AD is observed in about 95% of patients, and APOE4-encoding apolipoprotein E4 (ApoE4) is strongly associated with these cases. As an apolipoprotein, the function of ApoE in brain cholesterol transport has been extensively studied and widely appreciated. Development of new technologies such as human-induced pluripotent stem cells (hiPSCs) and CRISPR-Cas9 genome editing tools have enabled us to develop human brain model systems in vitro and readily manipulate genomic information. In the context of these advances, recent studies provide strong evidence that abnormal cholesterol metabolism by ApoE4 could be linked to AD-associated pathology. In this review, we discuss novel discoveries in brain cholesterol dysregulation by ApoE4. We further elaborate cell type-specific roles in cholesterol regulation of four major brain cell types, neurons, astrocytes, microglia, and oligodendrocytes, and how its dysregulation can be linked to AD pathology.

Characterization of Virulence Function of Pseudomonas cichorii Avirulence Protein E1 (AvrE1) during Host Plant Infection

  • Huong, Duyen Do Tran;Rajalingam, Nagendran;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.494-501
    • /
    • 2021
  • Pseudomonas cichorii secretes effectors that suppress defense mechanisms in host plants. However, the function of these effectors, including avirulence protein E1 (AvrE1), in the pathogenicity of P. cichorii, remains unexplored. In this study, to investigate the function of avrE1 in P. cichorii JBC1 (PcJBC1), we created an avrE1-deficient mutant (JBC1ΔavrE1) using CRISPR/Cas9. The disease severity caused by JBC1ΔavrE1 in tomato plants significantly decreased by reducing water soaking during early infection stage, as evidenced by the electrolyte leakage in infected leaves. The disease symptoms caused by JBC1ΔavrE1 in the cabbage midrib were light-brown spots compared to the dark-colored ones caused by PcJBC1, which indicates the role of AvrE1 in cell lysis. The avrE1-deficient mutant failed to elicit cell death in non-host tobacco plants. Disease severity and cell death caused by JBC1ΔavrE1 in host and non-host plants were restored through heterologous complementation with avrE1 from Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Overall, our results indicate that avrE1 contributes to cell death during early infection, which consequently increases disease development in host plants. The roles of PcJBC1 AvrE1 in host cells remain to be elucidated.

Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis

  • Kim, Hyun Jeong;Park, Jin Woo;Kang, Joo-Young;Seo, Sang-Beom
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.444-457
    • /
    • 2021
  • Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.