Browse > Article
http://dx.doi.org/10.1038/s12276-018-0187-x

A splice variant of human Bmal1 acts as a negative regulator of the molecular circadian clock  

Lee, Jiwon (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine)
Park, Eonyoung (GenWay Biotech, Inc.)
Kim, Ga Hye (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine)
Kwon, Ilmin (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine)
Kim, Kyungjin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Experimental and Molecular Medicine / v.50, no.12, 2018 , pp. 6.1-6.10 More about this Journal
Abstract
Bmal1 is one of the key molecules that controls the mammalian molecular clock. In humans, two isoforms of Bmal1 are generated by alternative RNA splicing. Unlike the extensively studied hBmal1b, the canonical form of Bmal1 in most species, the expression and/or function of another human-specific isoform, hBmal1a, are poorly understood. Due to the lack of the N-terminal nuclear localization signal (NLS), hBMAL1a does not enter the nucleus as hBMAL1b does. However, despite the lack of the NLS, hBMAL1a still dimerizes with either hCLOCK or hBMAL1b and thereby promotes cytoplasmic retention or protein degradation, respectively. Consequently, hBMAL1a interferes with hCLOCK:hBMAL1b-induced transcriptional activation and the circadian oscillation of Period2. Moreover, when the expression of endogenous hBmal1a is aborted by CRISPR/Cas9-mediated knockout, the rhythmic expression of hPer2 and hBmal1b is restored in cultured HeLa cells. Together, these results suggest a role for hBMAL1a as a negative regulator of the mammalian molecular clock.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wolting, C. D. & McGlade, C. J. Cloning and chromosomal localization of a new member of the bHLH/PAS transcription factor family. Mamm. Genome 9, 463-468 (1998).   DOI
2 Kondratov, R. V. et al. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932 (2003).   DOI
3 Kwon, I. et al. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell Biol. 26, 7318-7330 (2006).   DOI
4 Hu, C. D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789-798 (2002).   DOI
5 Hu, C. D. & Kerppola, T. K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539-545 (2003).   DOI
6 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308 (2013).   DOI
7 Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).   DOI
8 Miyazaki, K. et al. Phosphorylation of clock protein PER1 regulates its circadian degradation in normal human fibroblasts. Biochem. J. 380, 95-103 (2004).   DOI
9 Balsalobre, A., Damiola, F. & Schibler, U. A serumshock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937 (1998).   DOI
10 Yoshitane, H. et al. Roles of CLOCK phosphorylation in suppression of E-boxdependent transcription. Mol. Cell Biol. 29, 3675-3686 (2009).   DOI
11 Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99-104 (2004).   DOI
12 Schibler, U. Circadian time keeping: the daily ups and downs of genes, cells, and organisms. Prog. Brain Res. 153, 271-282 (2006).
13 Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139-148 (2007).   DOI
14 Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569 (1998).   DOI
15 Hogenesch, J. B., Gu, Y. Z., Jain, S. & Bradfield, C. A. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 5474-5479 (1998).   DOI
16 Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57-68 (1999).   DOI
17 Caldenhoven, E. et al. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J. Biol. Chem. 271, 13221-13227 (1996).   DOI
18 Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510-514 (2001).   DOI
19 Nakamura, K., Yamashita, S., Omori, Y. & Minegishi, T. A splice variant of the human luteinizing hormone (LH) receptor modulates the expression of wildtype human LH receptor. Mol. Endocrinol. 18, 1461-1470 (2004).   DOI
20 Lee, E. J., Kim, J. M., Lee, M. K. & Jameson, J. L. Splice variants of the forkhead box protein AFX exhibit dominant negative activity and inhibit AFXalphamediated tumor cell apoptosis. PLoS ONE 3, e2743 (2008).   DOI
21 Li, Q. et al. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc. Natl. Acad. Sci. USA 109, 14699-14704 (2012).   DOI
22 Lowrey, P. L. & Takahashi, J. S. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34, 533-562 (2000).   DOI
23 Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676 (2001).   DOI
24 Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007).   DOI
25 Lee, J. et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell Biol. 28, 6056-6065 (2008).   DOI
26 Collett, M. A., Dunlap, J. C. & Loros, J. J. Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol. Cell Biol. 21, 2619-2628 (2001).   DOI
27 Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177-180 (2003).   DOI
28 Shim, H. S. et al. Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep. 8, 366-371 (2007).   DOI
29 Gossan, N. C. et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 42, 5765-5775 (2014).   DOI
30 Chen, S. et al. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J. Biol. Chem. 293, 11296-11309 (2018).   DOI
31 Diernfellner, A. et al. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett. 581, 5759-5764 (2007).   DOI
32 Diernfellner, A. C., Schafmeier, T., Merrow, M. W. & Brunner, M. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev. 19, 1968-1973 (2005).   DOI
33 Allada, R., Kadener, S., Nandakumar, N. & Rosbash, M. A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude. EMBO J. 22, 3367-3375 (2003).   DOI
34 Majercak, J., Sidote, D., Hardin, P. E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219-230 (1999).   DOI
35 Ikeda, M. & Nomura,M. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem. Biophys. Res. Commun. 233, 258-264 (1997).   DOI
36 Yu, W. et al. Characterization of three splice variants and genomic organization of the mouse BMAL1 gene. Biochem. Biophys. Res. Commun. 260, 760-767 (1999).   DOI