Browse > Article
http://dx.doi.org/10.4014/jmb.1508.08007

Cell-Based Assay Design for High-Content Screening of Drug Candidates  

Nierode, Gregory (Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute)
Kwon, Paul S. (Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute)
Dordick, Jonathan S. (Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute)
Kwon, Seok-Joon (Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.2, 2016 , pp. 213-225 More about this Journal
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Keywords
High content screening (HCS); drug discovery; cell-based assay; 3D cell culture system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. 2011. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136: 473-478.   DOI
2 Wade M. 2015. High-throughput silencing using the CRISPR-Cas9 system: a review of the benefits and challenges. J. Biomol. Screen. 20: 1027-1039.   DOI
3 Walsh DP, Chang YT. 2006. Chemical genetics. Chem. Rev. 106: 2476-2530.   DOI
4 Wells JA, McClendon CL. 2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001-1009.   DOI
5 Weston CR, Davis RJ. 2001. Signal transduction: signaling specificity - a complex affair. Science 292: 2439-2440.   DOI
6 Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNAguided genetic silencing systems in bacteria and archaea. Nature 482: 331-338.   DOI
7 Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. 2008. Molecular imaging in drug development. Nat. Rev. Drug Discov. 7: 591-607.   DOI
8 Wink S, Hiemstra S, Huppelschoten S, Danen E, Niemeijer M, Hendriks G, et al. 2014. Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment. Chem. Res. Toxicol. 27: 338-355.   DOI
9 Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 1370-1379.   DOI
10 Zanella F, Lorens JB, Link W. 2010. High content screening: seeing is believing. Trends Biotechnol. 28: 237-245.   DOI
11 Aronson JK. 2007. Old drugs - new uses. Br. J. Clin. Pharmacol. 64: 563-565.   DOI
12 Arkin MR, Glicksman MA, Fu H, Havel JJ, Du Y. 2004. Inhibition of protein-protein interactions: non-cellular assay formats. In Sittampalam GS, Coussens NP, Nelson H, Arkin M, Auld D, Austin C, et al. (eds.). Assay Guidance Manual. Bethesda, MD.
13 Arkin MR, Wells JA. 2004. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3: 301-317.   DOI
14 Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509: 487-491.   DOI
15 Ziauddin J, Sabatini DM. 2001. Microarrays of cells expressing defined cDNAs. Nature 411: 107-110.   DOI
16 Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith A. 2015. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res. 43: 3407-3419.   DOI
17 Arnone MI, Dmochowski IJ, Gache C. 2004. Using reporter genes to study cis-regulatory elements. Methods Cell Biol. 74: 621-652.
18 Ashburn TT, Thor KB. 2004. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug. Discov. 3: 673-683.   DOI
19 Aswendt M, Adamczak J, Tennstaedt A. 2014. A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Front. Cell. Neurosci. 8: 226.   DOI
20 Boland MV, Murphy RF. 2001. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17: 1213-1223.   DOI
21 Boutros M, Ahringer J. 2008. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9: 554-566.   DOI
22 Bronstein I, Fortin J, Stanley PE, Stewart GS, Kricka LJ. 1994. Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219: 169-181.   DOI
23 Chen L, Feany MB. 2005. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat. Neurosci. 8: 657-663.   DOI
24 Campeau E, Gobeil S. 2011. RNA interference in mammals: behind the screen. Brief. Funct. Genomics 10: 215-226.   DOI
25 Canton I, Cole DM, Kemp EH, Watson PF, Chunthapong J, Ryan AJ, et al. 2010. D evelopment of a 3D human in vitro skin co-culture model for detecting irritants in real-time. Biotechnol. Bioeng. 106: 794-803.   DOI
26 Cong L, Ran FA, Cox D, Lin S, Barret to R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.   DOI
27 Celli JP, Rizvi I, Blanden AR, Massodi I, Glidden MD, Pogue BW, Hasan T. 2014. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci. Rep. 4: 3751.   DOI
28 Chong CR, Sullivan DJ Jr. 2007. New uses for old drugs. Nature 448: 645-646.   DOI
29 Clemons PA. 2004. Complex phenotypic assays in high-throughput screening. Curr. Opin. Chem. Biol. 8: 334-338.   DOI
30 Conrad C, Erfle H, Warnat P, Daigle N, Lorch T, Ellenberg J, et al. 2004. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14: 1130-1136.   DOI
31 Conrad C, Gerlich DW. 2010. Automated microscopy for high-content RNAi screening. J. Cell Biol. 188: 453-461.   DOI
32 Crisman TJ, Parker CN, Jenkins JL, Scheiber J, Thoma M, Kang ZB, et al. 2007. Underst anding false positives in reporter gene assays: in silico chemogenomics approaches to prioritize cell-based HTS data.J. Chem. Inf. Model. 47: 1319-1327.   DOI
33 Echeverri CJ, Perrimon N. 2006. High-throughput RNAi screening in cultured cells: a user’s guide. Nat. Rev. Genet. 7: 373-384.   DOI
34 Dhaliwal A, Oshita V, Segura T. 2013. Transfection in the third dimension. Integr. Biol. (Camb.) 5: 1206-1216.   DOI
35 Diamandis P, Wildenhain J, Clarke ID, Sacher AG, Graham J, Bellows DS, et al. 2007. Chemical genetics reveals a complex functional ground state of neural stem cells. Nat. Chem. Biol. 3: 268-273.   DOI
36 Enikolopov G, Overstreet-Wadiche L, Ge S. 2015. Viral and transgenic reporters and genetic analysis of adult neurogenesis. Cold Spring Harb. Perspect. Biol. 7: a018804.   DOI
37 Duryagina R, Anastassiadis K, Maitz MF, Gramm S, Schneider S, Wobus M, et al. 2014. Cellular reporter systems for high-throughput screening of interactions between bioactive matrices and human mesenchymal stromal cells. Tissue Eng. Part C Methods 20: 828-837.   DOI
38 Edwards BS, Sklar LA. 2015. Flow cytometry: impact on early drug discovery. J. Biomol. Screen. 20: 689-707.   DOI
39 Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R , Lagerqvist EL, et al. 2011. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8: 1037-1040.   DOI
40 Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, et al. 2007. Reverse transfection on cell arrays for high content screening microscopy. Nat. Protoc. 2: 392-399.   DOI
41 Erfle H, Neumann B, Rogers P, Bulkescher J, Ellenberg J, Pepperkok R. 2008. Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates. J. Biomol. Screen. 13: 575-580.   DOI
42 Erfle H, Simpson JC, Bastiaens PI, Pepperkok R. 2004. siRNA cell arrays for high-content screening microscopy. Biotechniques 37: 454-458, 460, 462.
43 Fernandes TG, Kwon SJ, Lee MY, Clark DS, Cabral JM, Dordick JS. 2008. On-chip, cell-based microarray immunofluorescence assay for high-throughput analysis of target proteins. Anal. Chem. 80: 6633-6639.   DOI
44 Falcon BL, Stewart J, Ezell S, Hanson J, Wijsman J, Ye X, et al. 2013. High-content multiplexed tissue imaging and quantification for cancer drug discovery. Drug Discov. Today 18: 510-522.   DOI
45 Fishman MC, Porter JA. 2005. Pharmaceuticals: a n ew grammar for drug discovery. Nature 437: 491-493.   DOI
46 Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA. 2009. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8: 567-578.   DOI
47 Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JM. 2009. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 27: 342-349.   DOI
48 Fields S, Song O. 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245-246.   DOI
49 Galarneau A, Primeau M, Trudeau LE, Michnick SW. 2002. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein-protein interactions. Nat. Biotechnol. 20: 619-622.   DOI
50 Ganesan AK, Ho H, Bodemann B, Petersen S, Aruri J, Koshy S, et al. 2008. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet. 4: e1000298.   DOI
51 Gasparri F, Galvani A . 2010. Image-based high-content reporter assays: limitations and advantages. Drug Discov. Today Technol. 7: e1-e94.   DOI
52 Hamdi A, Colas P. 2012. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol. Sci. 33: 109-118.   DOI
53 Genovesio A, Kwon YJ, Windisch MP, Kim NY, Choi SY, Kim HC, et al. 2011. Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J. Biomol. Screen. 16: 945-958.   DOI
54 Haycock JW. 2011. 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695: 1-15.
55 Ghosh I, Hamilton AD, Regan L. 2000. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122: 5658-5659.   DOI
56 Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, et al. 2008. The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. USA 105: 763-768.   DOI
57 Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. 2014. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32: 40-51.   DOI
58 Hendriks G, Atallah M, Morolli B, Calleja F, Ras-Verloop N, Huijskens I, et al. 2012. The ToxTracker assay: novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol. Sci. 125: 285-298.   DOI
59 Hendriks G, van de Water B, Schoonen W, Vrieling H. 2013. Cellular-signaling pathways unveil the carcinogenic potential of chemicals. J. Appl. Toxicol. 33: 399-409.   DOI
60 Herce HD, Deng W, Helma J, Leonhardt H, Cardoso MC. 2013. Visualization and targeted disruption of protein interactions in living cells. Nat. Commun. 4: 2660.   DOI
61 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31: 827-832.   DOI
62 Hibbitts A, Lieggi N, McCabe O, Thomas W, Barlow J, O’Brien F, Cryan SA. 2011. Screening of siRNA nanoparticles for delivery to airway epithelial cells using high-content analysis.Ther. Deliv. 2: 987-999.   DOI
63 Hynds RE, Giangreco A. 2013. Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem Cells 31: 417-422.   DOI
64 Hofman F. 2002. Immunohistochemistry. Curr. Protoc. Immunol. Chapter 21: Unit 21.4.
65 Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170.   DOI
66 Hughes JP, Rees S, Kalindjian SB, Philpott KL. 2011. Principles of early drug discovery. Br. J. Pharmacol. 162: 1239-1249.   DOI
67 Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS. 2007. High-throughput screening assays for the ident ification of chemical probes. Nat. Chem. Biol. 3: 466-479.   DOI
68 Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. 2006. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12: 1179-1187.   DOI
69 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.   DOI
70 Johnsson N, Varshavsky A. 1994. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91: 10340-10344.   DOI
71 Krausz E, Korn K. 2008. High-cont ent siRNA screening for target identification and validation. Expert Opin. Drug Discov. 3: 551-564.   DOI
72 Karlsson HL, Gliga AR, Calleja FM, Goncalves CS, Wallinder IO, Vrieling H, et al. 2014. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part. Fibre Toxicol. 11: 41.   DOI
73 Kwon SJ, Lee DW, Shah DA, Ku B, Jeon SY, Solanki K, et al. 2014. High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening. Nat. Commun. 5: 3739.
74 Korn K, Krausz E. 2007. Cell-based high-content screening of small-molecule libraries. Curr. Opin. Chem. Biol. 11: 503-510.   DOI
75 Krausz E. 2007. High-content siRNA screening. Mol. Biosyst. 3: 232-240.   DOI
76 Kumar R, Conklin DS, Mittal V. 2003. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13: 2333-2340.   DOI
77 Ledford H. 2011. Translational research: 4 ways to fix the clinical trial. Nature 477: 526-528.   DOI
78 Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, et al. 1998. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273: 34970-34975.   DOI
79 Loo LH, Wu LF, Altschuler SJ. 2007. Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4: 445-453.
80 Machleidt T, Whitney P, Bi K. 2009. Multiplexing of pathway-specific beta-lactamase reporter gene assays by optical coding with Qtracker nanocrystals. J. Biomol. Screen. 14: 845-852.   DOI
81 Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10: 957-963.   DOI
82 Meli L, Barbosa HS, Hickey AM, Gasimli L, Nierode G, Diogo MM, et al. 2014. Three-dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res. 13: 36-47.   DOI
83 Michnick SW, Ear PH, Landry C, Malleshaiah MK, Messier V. 2010. A toolkit of protein-fragment complementation assays for studying and dissecting large-scale and dynamic protein-protein interactions in living cells. Methods Enzymol. 470: 335-368.
84 Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823-826.   DOI
85 Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al. 2006. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34: D108-D110.   DOI
86 Meacham CE, Morrison SJ. 2013. Tumour heterogeneity and cancer cell plasticity. Nature 501: 328-337.   DOI
87 Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. 2007. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 6: 569-582.   DOI
88 Michnick SW, Remy I, Campbell-Valois FX, Vallee-Belisle A, Pelletier JN. 2000. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 328: 208-230.
89 Mohr SE, Perrimon N. 2012. RNAi screening: new approaches, understandings, and organisms. Wiley Interdiscip. Rev. RNA 3: 145-158.   DOI
90 Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N. 2014. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15: 591-600.   DOI
91 Ohtsuka M, Kimura M, Tanaka M, Inoko H. 2009. Recombinant DNA technologies for construction of precisely designed transgene constructs. Curr. Pharm. Biotechnol. 10: 244-251.   DOI
92 Pampaloni F, Reynaud EG, Stelzer EH. 2007. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8: 839-845.   DOI
93 Narayanan K, Chen Q. 2011. Bacterial artificial chromosome mutagenesis using recombineering. J. Biomed. Biotechnol. 2011: 971296.   DOI
94 Naylor LH. 1999. Reporter gene technology: the future looks bright. Biochem. Pharmacol. 58: 749-757.   DOI
95 Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J. 2006. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat. Methods 3: 385-390.   DOI
96 Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. 2010. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9: 203-214.   DOI
97 Pawson T, Nash P. 2000. Protein-protein interactions define specificity in signal transduction. Genes Dev. 14: 1027-1047.
98 Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M. 2005. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436: 78-86.   DOI
99 Pelletier JN, Campbell-Valois FX, Michnick SW. 1998. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. USA 95: 12141-12146.   DOI
100 Perfetto SP, Chattopadhyay PK, Roederer M. 2004. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4: 648-655.   DOI
101 Remy I, Wilson IA, Michnick SW. 1999. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283: 990-993.   DOI
102 Ren Q, Li C, Yuan P, Cai C, Zhang L, Luo GG, Wei W. 2015. A dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci. Rep. 5: 8865.   DOI
103 Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ. 2004. Multidimensional drug profiling by automated microscopy. Science 306: 1194-1198.   DOI
104 Rao VS, Srinivas K, Sujini GN, Kumar GN. 2014. Protein-protein interaction detection: methods and analysis. Int. J. Proteomics 2014: 147648.   DOI
105 Remy I, Michnick SW. 2006. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat. Methods 3: 977-979.   DOI
106 Ryan DP, Matthews JM. 2005. Protein-protein interactions in human disease. Curr. Opin. Struct. Biol. 15: 441-446.   DOI
107 Samsel L, Dagur PK, Raghavachari N, Seamon C, Kato GJ, McCoy JP Jr. 2013. Imaging flow cytomet ry for morphologic and phenotypic characterization of rare circulating endothelial cells. Cytometry B Clin. Cytom. 84: 379-389.   DOI
108 Sato M, Kawai Y, Umezawa Y. 2007. Genetically encoded fluorescent indicators to visualize protein phosphorylation by extracellular signal-regulated kinase in single living cells. Anal. Chem. 79: 2570-2575.   DOI
109 Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y. 2002. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol. 20: 287-294.   DOI
110 Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 84-87.   DOI
111 Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99: 5515-5520.   DOI
112 Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, et al. 2006. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3: 995-1000.   DOI
113 Shalem O, Sanjana NE, Zhang F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16: 299-311.   DOI
114 Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22: 1567-1572.   DOI
115 Silva JM, Mizuno H, Brady A, Lucito R, Hannon GJ. 2004. RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc. Natl. Acad. Sci. USA 101: 6548-6552.   DOI
116 Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, et al. 2005. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462-469.   DOI
117 Swinney DC, Anthony J. 2011. How were new medicines discovered? Nat. Rev. Drug Discov. 10: 507-519.   DOI
118 Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, et al. 2005. An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol. 3: e128.   DOI
119 Ting AY, Kain KH, Klemke RL, Tsien RY. 2001. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. USA 98: 15003-15008.   DOI
120 Wang N, Zhang H, Zhang BQ, Liu W, Zhang Z, Qiao M, et al. 2014. Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids. PLoS One 9: e93608.   DOI