DOI QR코드

DOI QR Code

A splice variant of human Bmal1 acts as a negative regulator of the molecular circadian clock

  • Lee, Jiwon (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Park, Eonyoung (GenWay Biotech, Inc.) ;
  • Kim, Ga Hye (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Kwon, Ilmin (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Kim, Kyungjin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2018.05.02
  • Accepted : 2018.09.12
  • Published : 2018.12.30

Abstract

Bmal1 is one of the key molecules that controls the mammalian molecular clock. In humans, two isoforms of Bmal1 are generated by alternative RNA splicing. Unlike the extensively studied hBmal1b, the canonical form of Bmal1 in most species, the expression and/or function of another human-specific isoform, hBmal1a, are poorly understood. Due to the lack of the N-terminal nuclear localization signal (NLS), hBMAL1a does not enter the nucleus as hBMAL1b does. However, despite the lack of the NLS, hBMAL1a still dimerizes with either hCLOCK or hBMAL1b and thereby promotes cytoplasmic retention or protein degradation, respectively. Consequently, hBMAL1a interferes with hCLOCK:hBMAL1b-induced transcriptional activation and the circadian oscillation of Period2. Moreover, when the expression of endogenous hBmal1a is aborted by CRISPR/Cas9-mediated knockout, the rhythmic expression of hPer2 and hBmal1b is restored in cultured HeLa cells. Together, these results suggest a role for hBMAL1a as a negative regulator of the mammalian molecular clock.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99-104 (2004). https://doi.org/10.1038/nature02800
  2. Schibler, U. Circadian time keeping: the daily ups and downs of genes, cells, and organisms. Prog. Brain Res. 153, 271-282 (2006).
  3. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139-148 (2007). https://doi.org/10.1038/nrm2106
  4. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569 (1998). https://doi.org/10.1126/science.280.5369.1564
  5. Hogenesch, J. B., Gu, Y. Z., Jain, S. & Bradfield, C. A. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 5474-5479 (1998). https://doi.org/10.1073/pnas.95.10.5474
  6. Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57-68 (1999). https://doi.org/10.1016/S0092-8674(00)80959-9
  7. Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676 (2001). https://doi.org/10.1146/annurev.physiol.63.1.647
  8. Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007). https://doi.org/10.1038/nature06394
  9. Lee, J. et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell Biol. 28, 6056-6065 (2008). https://doi.org/10.1128/MCB.00583-08
  10. Lowrey, P. L. & Takahashi, J. S. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34, 533-562 (2000). https://doi.org/10.1146/annurev.genet.34.1.533
  11. Gossan, N. C. et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 42, 5765-5775 (2014). https://doi.org/10.1093/nar/gku225
  12. Chen, S. et al. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J. Biol. Chem. 293, 11296-11309 (2018). https://doi.org/10.1074/jbc.RA117.001432
  13. Collett, M. A., Dunlap, J. C. & Loros, J. J. Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol. Cell Biol. 21, 2619-2628 (2001). https://doi.org/10.1128/MCB.21.8.2619-2628.2001
  14. Diernfellner, A. et al. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett. 581, 5759-5764 (2007). https://doi.org/10.1016/j.febslet.2007.11.043
  15. Diernfellner, A. C., Schafmeier, T., Merrow, M. W. & Brunner, M. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev. 19, 1968-1973 (2005). https://doi.org/10.1101/gad.345905
  16. Allada, R., Kadener, S., Nandakumar, N. & Rosbash, M. A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude. EMBO J. 22, 3367-3375 (2003). https://doi.org/10.1093/emboj/cdg318
  17. Majercak, J., Sidote, D., Hardin, P. E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219-230 (1999). https://doi.org/10.1016/S0896-6273(00)80834-X
  18. Ikeda, M. & Nomura,M. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem. Biophys. Res. Commun. 233, 258-264 (1997). https://doi.org/10.1006/bbrc.1997.6371
  19. Yu, W. et al. Characterization of three splice variants and genomic organization of the mouse BMAL1 gene. Biochem. Biophys. Res. Commun. 260, 760-767 (1999). https://doi.org/10.1006/bbrc.1999.0970
  20. Wolting, C. D. & McGlade, C. J. Cloning and chromosomal localization of a new member of the bHLH/PAS transcription factor family. Mamm. Genome 9, 463-468 (1998). https://doi.org/10.1007/s003359900797
  21. Kondratov, R. V. et al. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932 (2003). https://doi.org/10.1101/gad.1099503
  22. Kwon, I. et al. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell Biol. 26, 7318-7330 (2006). https://doi.org/10.1128/MCB.00337-06
  23. Hu, C. D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789-798 (2002). https://doi.org/10.1016/S1097-2765(02)00496-3
  24. Hu, C. D. & Kerppola, T. K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539-545 (2003). https://doi.org/10.1038/nbt816
  25. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308 (2013). https://doi.org/10.1038/nprot.2013.143
  26. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001). https://doi.org/10.1016/S0092-8674(01)00610-9
  27. Miyazaki, K. et al. Phosphorylation of clock protein PER1 regulates its circadian degradation in normal human fibroblasts. Biochem. J. 380, 95-103 (2004). https://doi.org/10.1042/bj20031308
  28. Balsalobre, A., Damiola, F. & Schibler, U. A serumshock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937 (1998). https://doi.org/10.1016/S0092-8674(00)81199-X
  29. Yoshitane, H. et al. Roles of CLOCK phosphorylation in suppression of E-boxdependent transcription. Mol. Cell Biol. 29, 3675-3686 (2009). https://doi.org/10.1128/MCB.01864-08
  30. Shim, H. S. et al. Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep. 8, 366-371 (2007). https://doi.org/10.1038/sj.embor.7400920
  31. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510-514 (2001). https://doi.org/10.1126/science.1060698
  32. Nakamura, K., Yamashita, S., Omori, Y. & Minegishi, T. A splice variant of the human luteinizing hormone (LH) receptor modulates the expression of wildtype human LH receptor. Mol. Endocrinol. 18, 1461-1470 (2004). https://doi.org/10.1210/me.2003-0489
  33. Lee, E. J., Kim, J. M., Lee, M. K. & Jameson, J. L. Splice variants of the forkhead box protein AFX exhibit dominant negative activity and inhibit AFXalphamediated tumor cell apoptosis. PLoS ONE 3, e2743 (2008). https://doi.org/10.1371/journal.pone.0002743
  34. Caldenhoven, E. et al. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J. Biol. Chem. 271, 13221-13227 (1996). https://doi.org/10.1074/jbc.271.22.13221
  35. Li, Q. et al. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc. Natl. Acad. Sci. USA 109, 14699-14704 (2012). https://doi.org/10.1073/pnas.1212977109
  36. Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177-180 (2003). https://doi.org/10.1038/ng1159

Cited by

  1. Naa10p Enhances Chemosensitivity to Cisplatin in Oral Squamous Cell Carcinoma Cells vol.13, pp.None, 2021, https://doi.org/10.2147/cmar.s296783
  2. Exome hits demystified: The next frontier vol.59, pp.None, 2021, https://doi.org/10.1016/j.ajp.2021.102640
  3. Biomechanical Evaluation of an Injectable Alginate / Dicalcium Phosphate Cement Composites for Bone Tissue Engineering vol.118, pp.None, 2018, https://doi.org/10.1016/j.jmbbm.2021.104439
  4. The potential role of mesenchymal stem cells in modulating antiageing process vol.45, pp.10, 2021, https://doi.org/10.1002/cbin.11652
  5. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states vol.37, pp.9, 2018, https://doi.org/10.1016/j.celrep.2021.110076
  6. Post-translational modification of RAS proteins vol.71, pp.None, 2021, https://doi.org/10.1016/j.sbi.2021.06.015