• Title/Summary/Keyword: CP/MAS NMR

Search Result 41, Processing Time 0.021 seconds

Quantitative Analysis of Silanization Degree of Silica Nanoparticles Modified with Bis[3-(trimethoxysilyl)propyl]amine Coupling Agent (Bis[3-(trimethoxysilyl)propyl]amine 커플링제로 개질된 실리카 나노입자의 실란화도 정량 분석)

  • Jeon, Ha-Na;Kim, Jung-Hye;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.372-379
    • /
    • 2012
  • In this study, we treated silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify their surfaces. We investigated the effects of BTMA hydrolysis time, BTMA concentration and BTMA treatment time on the degree of silanization reaction of silica nanoparticles. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to obtain quantitative data. We found the decrease of isolated Si-OH peak intensity at 3747 $cm^{-1}$ and the increase of $-CH_2 $stretching and bending peaks with increasing hydrolysis time, concentration and treatment time of BTMA. EA analysis results also supported this trend. We found a strong effect of BTMA concentration on the degree of silanization of the silica particles, but weak effects of the hydrolysis time and the treatment time.

Preparation and Characterization of Hard Coating Materials Based on Silane Modified Boehmite Hybrid Materials (Bohemite 나노졸을 이용한 내구성 코팅재료의 제조와 특성에 관한 연구)

  • Jeon, Seong Je;Kim, Woong;Lee, Jai Joon;Koo, Sang Man
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2006
  • UV-thermal dually curable coating materials were prepared by the sol-gel method. Nano-sized colloidal boehmite was treated with various organo silane coupling agents. These materials could be well dispersed in various alcohols and relatively polar organic solvents such as tetrahydrofuran and acetonitrile. The coating films were prepared by a spin coating method on various substrates, which were characterized by FT-IR, Si/Al CP MAS NMR spectra, UV-Vis spectrophotometer, FE-SEM, Taber abraser, haze meter, and pencil hardness tester. The effects of molar ratio and types of silane coupling agents, curing method and ion-shower treatment were investigated. Dually curable coating method offered an optimally good quality film in both hardness and transmittance. The transparency and the hardness of the prepared films were increased with amounts of 3-(trimethoxysilyl)propylmethacrylate, and (3-glycidyloxypropyl)trimethoxysilane, respectively. The adhesion between coated layer and substrate could be enhanced by ion-shower treatment.

Spectroscopic Studies on the Reaction between Amino Groups on Silica Nanoparticle Surface and Glycidyl Methacrylate (실리카 나노입자 표면에 결합된 아미노기와 Glycidyl Methacrylate의 반응에 관한 분광학적 연구)

  • Lee, Sangmi;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.777-783
    • /
    • 2013
  • We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These grafted N-H groups were reacted with glycidyl methacrylate (GMA) to introduce polymerizable methacrylate groups on the silica surface. After modification reaction, we used several analytical techniques such as Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state $^{13}C$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to analyze the effects of reaction time, reaction temperature and used GMA concentration on the modification degree between N-H groups on the silica surface and epoxide groups of GMA. We found increased introduction of methacrylate groups on the silica surface by ring opening reaction of epoxide groups of GMA with N-H groups on BTMA treated silica with increased reaction time, reaction temperature and used GMA concentration within our experimental conditions.

Micro-Chemical Structure of Polyaniline Synthesized by Self-Stabilized Dispersion Polymerization

  • NamGoong, Hyun;Woo, Dong-Jin;Lee, Suck-Hyun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.633-639
    • /
    • 2007
  • A variety of NMR techniques were applied to the micro-chemical structural characterization of polyanilines prepared via an efficient synthetic method in a self-stabilized dispersion medium in which the polymerization was conducted in a heterogeneous organic/aqueous biphasic system without any stabilizers. Here, the monomer and growing polymer chain were shown to function simultaneously as a stabilizer, imparting compatibility for the dispersion of the organic phase, and as a form of flexible template in an aqueous reaction medium. Polymerizations predicated on this concept generated polyanilines with a low defect content: solution state $^{13}C-NMR$ and solid $^{13}CDD/CP/MAS$ spectroscopy indicated that the synthesized HCPANi and its soluble derivative, HCPANi-t-BOC, evidenced distinctly different NMR spectra with fewer side peaks, as compared to conventionally prepared PANis, and the complete structural assignments of the observed NMR peaks could be determined via the combination of both 1D and 2D techniques. Ortho-linked defects in HCPANi were estimated to be as low as 7%, as shown by a comparison of the integration of the carbonyl carbon resonance peaks.

A Study on the Preparation of Hollow Microbeads Using Hydroxypropyl Chitosan (키토산 유도체를 이용한 화장품용 중공 마이크로비드의 제조에 관한 연구)

  • 하병조
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.1
    • /
    • pp.7-24
    • /
    • 1998
  • 게 껍질로부터 얻은 키틴을 탈아세틸화하여 키토산을 얻었으며, 얻어진 키토산의 유기용매에 대한 용해성을 향상시키기 위해 알칼리 조건에서 고압반응ㅇ기를 사용하여 프로필렌옥사이드와 반응시켜 치환율 3.5의 히드록시프로필 키토산을 합성하였다. 합성된 히드록시프로필 키토산은 고체상 CP/MAS 13C-NMR, 1H-NMR, FT-IR을 통해 반응이 키토산의 6번 탄소의 수산기와 2번 탄소의 아민기에 주로 일어났음을 알 수 있었다. 또한 X-선 회절분석을 통해 키토산의 결정성이 프로필렌옥사이드와의 반응에 의해 크게 감소하였음을 알 수 있었고, 그 결과 유기 용매에 대한 용해성이 현저히 증가되는 현상을 나타내었다. 한편, 히드록시프로필 키토산을 수상에 녹인 후 W/O 에멀젼상에 서 알칼리 촉매를 사용항 에피클로로히드린과 가교반응을 실시한 결과 내부가 비어있는 중공 마이크로비드를 얻을 수 있었다. 전자현미경을 통한 분석결과 중공 마이크로비드의 껍질의 내부에는 스킨층이 형성되어 있었으며, 외부 표면은 다공성이 높은 비대칭 막으로 되어 있음을 확인할 수 있었다.

  • PDF

Spectroscopic Analysis on Michael Addition Reaction of Secondary Amino Groups on Silica Surface with 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate (2차 아미노기가 결합된 실리카 나노 입자 표면에 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 대한 분광학적 분석)

  • Lee, Sangmi;Ha, Ki Ryong
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]ethylenediamine (BTPED) silane coupling agent, which has two secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce polymerizable methacrylate groups by Michael addition reaction. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and liquid and solid state cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand the reactions between N-H groups of BTPED modified silica surface and acrylate groups of AHM monomer. We confirmed Michael addition reaction between BTPED modified silica and AHM completed in 2 hr reaction time. We also found increased methacrylate group introduction with increase of mol ratio of the acrylate group of AHM to N-H group of BTPED modified silica by increase of C=O peak area of measured FTIR spectra. These results were also supported by EA and solid state $^{13}C$ and $^{29}Si$ NMR results.

Solid State NMR Study of PAZO-6 and Related Materials

  • Han, Oc Hee;Jin, Jung-Il;Kim, Jong-Sung;Yoon, Yong-Kook;Huh, Sung-Mu
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.493-498
    • /
    • 1995
  • PAZO-6 is a new combined type liquid crystalline polymers (LCP) which has two types of mesogens combined non linearly. Ordering of branch mesogen azo group, in PAZO-6 is an important parameter to observe as well as the substitution effect on the backbone. The related small molecules sllch as monomers as well as the polymer itself are studied by solid state NMR techniques. Preliminary $^{13}C$ CP/MAS (cross polarization/ magic angle spinning) spectral results suggest that the azo groups in the monomers are not aligned with themselves. Azo groups in the monomers seem to be poorly ordered between well ordered p-phenylene terephthalate moeities. Similar disordering tendency of the azo group in PAZO-6 is deduced from the overall aromatic carbon peak positions which are not much different from those of the monomer.

  • PDF

Determination of crystallinity index of cellulose depending on sample preparation and analysis instruments (시료 조건 및 측정방법에 따른 셀룰로오스의 결정화도 평가)

  • Ahn, Jung-Eon;Youn, Hye-Jung;Joung, Yang-Jin;Kim, Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.43-50
    • /
    • 2012
  • The crystallinity index is an important characteristic of cellulose. The crystallinity value is different depending on the adopted instrument. In this study, we determined a crystallinity index of cotton and wood celluloses using wide-angle X-ray scattering (WAXS), powder X-ray diffractometer (PXRD), and cross polarization/magic angle spinning solid-state $^{13}C$ nuclear magnetic resonance spectroscopy (CP/MAS solid-state $^{13}C$ NMR). The specimen was prepared in forms of powder, sheet and pallet. With the comparison of the obtained crystallinity indices of the cellulose, the effects of the analysis instrument, the sample preparation and analysis method were investigated. Among three instruments, the crystallinity indices by PXRD and NMR had a good relationship and reproducibility, and WAXS gave the crystallinity index with poor reproducibility. In the case of analysis methods of crystallinity indices, the Segal method showed higher value than that of the Ruland-Vonk method. We expect that this study would be applicable to evaluate the crystallinity index of various cellulose materials with accuracy and reproducibility.

Efficient baseline suppression via TIP and modified DEPTH

  • Hyun, Namgoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.51-58
    • /
    • 2022
  • The baseline flattened NMR spectrum has been achieved by several methodologies including pulse manipulation with a series of phase cycling. The background signal inherent in the probe is also main source of baseline distortion both in solution and solid NMR. The simple direct polarization with 90° pulse flipping the magnetization from the z-axis onto the receiver coil requires the strong rf pulse enough to encompass the wide frequency range to excite the resonance of interest nuclei. Albeit the perfect polarization 90° pulse, the signal from the unwanted magnetic fields such as background signal can not be completely suppressed by suitable phase cycling. Moreover, slowly baseline wiggling signal from the low 𝛾 nuclei is not easy to eliminate with multiple pulse manipulation. So there is still need to contrive the new scheme for that purpose in an adroit manner. In this article new triple pulse excitation schemes for TIP and modified DEPTH pulse sequence are analytically examined in terms of arbitrary phase and flip angle of pulse. The suitable phase cycling for these pulse trains is necessary for the good sensitivity and resolution of the spectrum. It is observed that the 13C sensitivity TIP experiment is almost equal to the CP/MAS with modified DEPTH sequence, both of which are applicable to both solid and solution state NMR.

Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent (실란 커플링제에 의해 표면이 개질된 실리카 나노입자의 분광학적 분석)

  • Song, Seong-Kyu;Kim, Jung-Hye;Hwang, Ki-Seob;Ha, Ki-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • In this study, we used 3-(trimethoxysilyl)propylmethacrylate(MPS) silane coupling agent for surface modification of silica nanoparticles. We studied effects of reaction conditions such as solvent pH, MPS hydrolysis time, reaction time, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, on the surface modification reactions of silica nanoparticles. Fourier Transform Infrared Spectroscopy(FTIR), Elemental Analysis(EA) and solid state crosspolarization magic angle spinning(CP/MAS) Nuclear Magnetic Resonance Spectroscopy(NMR) techniques were used to determine the type and the degree of surface modification. We found MPS reacts preferentially with Si-OH groups of the silica nanoparticles as monomeric form at solvent pH = 4.5. But increasing hydrolysis time of MPS from 30 mins to 90 mins, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, we found that MPS reacts preferentially with Si-OH groups of the silica nanoparticles as oligomeric form.