Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.3.372

Quantitative Analysis of Silanization Degree of Silica Nanoparticles Modified with Bis[3-(trimethoxysilyl)propyl]amine Coupling Agent  

Jeon, Ha-Na (Department of Chemical Engineering, Keimyung University)
Kim, Jung-Hye (Department of Chemical Engineering, Keimyung University)
Ha, Ki-Ryong (Department of Chemical Engineering, Keimyung University)
Publication Information
Polymer(Korea) / v.36, no.3, 2012 , pp. 372-379 More about this Journal
Abstract
In this study, we treated silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify their surfaces. We investigated the effects of BTMA hydrolysis time, BTMA concentration and BTMA treatment time on the degree of silanization reaction of silica nanoparticles. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to obtain quantitative data. We found the decrease of isolated Si-OH peak intensity at 3747 $cm^{-1}$ and the increase of $-CH_2 $stretching and bending peaks with increasing hydrolysis time, concentration and treatment time of BTMA. EA analysis results also supported this trend. We found a strong effect of BTMA concentration on the degree of silanization of the silica particles, but weak effects of the hydrolysis time and the treatment time.
Keywords
silica; bis[3-(trimethoxysilyl)propyl]amine; hydrolysis; silanization; silanol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 M.-C. B. Salon, M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Gandini, J. Colloid Interface Sci., 289, 249 (2005).   DOI   ScienceOn
2 J. W. Kim and C. K. Kim, Polymer(Korea), 30, 75 (2006).
3 E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York, p 133 (1991).
4 T. Metroke, Y. Wang, J. Wim, V. Ooij, and D. W. Schaefer, J. Sol. Sci. Tech., 51, 23 (2009).   DOI   ScienceOn
5 Y. Y. Qi, J. Zeng, Z. Liao, Z. Chen, and Y. Chen, J. Appl. Polym. Sci., 98, 1500 (2005).   DOI   ScienceOn
6 B. Arkles, Chemtech., 7, 766 (1977).
7 M. Marrone, T. Montanari, G. Busca, L. Conzatti, G. Costa, M. Castellano, and A. Turturro, J. Phys. Chem., 108, 3563 (2004).   DOI   ScienceOn
8 A. A. El Hadad, D. Carbonell, V. Barranco, A. J.-Morales, B. Casal, and J. C. Galvan, Colloid Polym. Sci., 289, 1875 (2011).   DOI   ScienceOn
9 K. G. Proctor, S. J. Markway, M. Garcia, C. A. Armstrong, and C. P. Gonzales, "Diffuse Reflectance FTIR Spectroscopic Study of Base Desorption from Thermally Treated Silica", in Collodial Silica: Fundamentals and Applications, H. E. Bergna and W. O. Roberts, Editors, Taylor & Francis, New York, p 385 (2006).
10 F. D. Osterholtz and E. R. Pohl, "Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review", in Silanes and Other Coupling Agents, K. L. Mittal, Editor, VSP BV, Utrecht, Netherlands, p 119 (1992).
11 "Silane Coupling Agent Guide", United Chemical Technologies, Inc., Bristol, PA, USA.
12 E. F. Vancant, P. Van Der Voort, and K. C. Vrancken, Characterization and Chemical Modification of The Silica Surface, Elsevier, Amsterdam, Vol 93, p 176 (1995).
13 D. Derouet and C. N. H. Thuc, J. Appl. Polym. Sci., 109, 2113 (2008).   DOI   ScienceOn
14 C. S. Ha, H. D. Park, and C. W. Frank, Chem. Mater., 12, 839 (2000).   DOI   ScienceOn
15 D. M. Qi, Y. Z. Bao, Z. M. Huang, and Z. X. Weng, J. Appl. Polym. Sci., 99, 3425 (2006).   DOI   ScienceOn
16 M. C. B. Salon and M. N. Belgacem, J. Colloid Surf. A, 366, 147 (2010).   DOI   ScienceOn
17 S.-H. Jin, J. Hong, I. Kim, J. H. Yun, and S. E. Shim, Polymer(Korea), 35, 342 (2011).
18 R. Murugaval, A. Voigt, M. G. Walawakar, and H. W. Roesky, Chem. Rev., 96, 2205 (1996).   DOI   ScienceOn
19 V. Dugas and Y. Chevalier, J. Colloid Interface Sci., 264, 354 (2003).   DOI   ScienceOn