Micro-Chemical Structure of Polyaniline Synthesized by Self-Stabilized Dispersion Polymerization

  • NamGoong, Hyun (Kolon Central Research Park) ;
  • Woo, Dong-Jin (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Suck-Hyun (Department of Molecular Science and Technology, Ajou University)
  • Published : 2007.12.31

Abstract

A variety of NMR techniques were applied to the micro-chemical structural characterization of polyanilines prepared via an efficient synthetic method in a self-stabilized dispersion medium in which the polymerization was conducted in a heterogeneous organic/aqueous biphasic system without any stabilizers. Here, the monomer and growing polymer chain were shown to function simultaneously as a stabilizer, imparting compatibility for the dispersion of the organic phase, and as a form of flexible template in an aqueous reaction medium. Polymerizations predicated on this concept generated polyanilines with a low defect content: solution state $^{13}C-NMR$ and solid $^{13}CDD/CP/MAS$ spectroscopy indicated that the synthesized HCPANi and its soluble derivative, HCPANi-t-BOC, evidenced distinctly different NMR spectra with fewer side peaks, as compared to conventionally prepared PANis, and the complete structural assignments of the observed NMR peaks could be determined via the combination of both 1D and 2D techniques. Ortho-linked defects in HCPANi were estimated to be as low as 7%, as shown by a comparison of the integration of the carbonyl carbon resonance peaks.

Keywords

References

  1. G. G. Wallace, G. M. Spinks, L. A. P. Kane-Maguire, and P. R. Teasdale, in Conductive Electroactive Polymers, CRC Press, New York, 2003, pp 51
  2. A. J. Epstein, in Organic Electronic Materials, R. Farchini and G. Gross, Eds., Springer, Berlin, 2001, pp 3
  3. B. Wessling, in Handbook of Nanostructured Materials and Nanotechnology, H. S. Nalwa, Ed., Academic Press, San Diego, 2000, pp 501
  4. A. G. Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. Somasiri, W. Wu, and S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 173 (1985)
  5. W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid, J. Chem. Soc. Faraday Trans. 1, 8, 2385 (1986)
  6. S.-H. Lee, D. H. Lee, K. Lee, and C. W. Lee, Adv. Funct. Mater., 15, 1495 (2005) https://doi.org/10.1002/adfm.200590000
  7. C. Lee, Y. H. Seo, and S.-H. Lee, Macromolecules, 34, 4070 (2004)
  8. S. Kaplan, E. M. Conwell, A. F. Richter, and A. G. MacDiarmid, J. Am. Chem. Soc., 110, 7647 (1988)
  9. A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somarisi, and A. J. Epstein, in Conducting Polymers, L. Alcacer, Ed., D. Reidel, Dordrecht, 1987, pp 105
  10. A. Yasuda and T. Shimidzu, Synth. Met., 61, 239 (1993) https://doi.org/10.1016/0379-6779(93)91268-7
  11. S. P. Armes, in Handbook of Conducting Polymers, T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Eds., 2nd, Marcel Dekker, New York, 1998, pp 423
  12. J. Hwang, S. Virji, B. H. Weiller, and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003) https://doi.org/10.1021/ja028371y
  13. J. Huang and R. B. Kaner, J. Am. Chem. Soc., 126, 851 (2004) https://doi.org/10.1021/ja037954k
  14. J. Huang and R. B. Kaner, Angew. Chem. Int. Ed., 43, 5817 (2004) https://doi.org/10.1002/anie.200460616
  15. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  16. K. Mallick, M. J. Witcomb, and M. S. Scurrell, Gold Bulletin, 39, 166 (2006) https://doi.org/10.1007/BF03215550
  17. N. Spetuseris, R. E. Ward, and T. Y. Meyer, Macromolecules, 31, 3158 (1998)
  18. J. Louie and J. F. Hartwig, Macromolecules, 31, 6737 (1998)
  19. J. P. Sadighi, R. A. Singer, and S. L. Buchwald, J. Am. Chem. Soc., 120, 4960 (1998)
  20. C. A. Fyfe, in Solid State NMR for Chemists, C. F. C Press, Guelph, Ontario, 1983
  21. M. Mehring, Principles of High Resolution NMR in Solids, Springer-Verlag, Berlin, 1983
  22. A. Raghunathan, G. Ranbarajan, and D. C. Trivedi, Synth. Metals, 81, 39 (1996)
  23. E. O. Stejskal and J. D. Memory, High Resolution NMR in the Solid State, Oxford Press, New York, 1994
  24. A. M. Kenwright, W. J. Feast, P. Adams, A. J. Milton, A. P. Monkman, and B. J. Say, Polymer, 33, 4292 (1992)
  25. A. J. Heeger, Rev. Mod. Phys., 73, 681 (2001) https://doi.org/10.1103/RevModPhys.73.1
  26. A. J. Epstein, in Organic Electronic Materials, R. Farchini and G. Gross, Eds., Springer, Berlin, 2001, pp 3
  27. S. A. Ashraf, L. A. P. Kanemaguire, M. R. Majidi, S. G. Pyne, and G. G. Wallace, Polymer, 38, 2627 (2003) https://doi.org/10.1016/S0032-3861(97)85595-4
  28. X. X. Zhang, J. P. Sadighi, T. W. Mackewitz, and S. L. Buchwald, J. Am. Chem. Soc., 122, 7606 (2000)
  29. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, and S.-H. Lee, Nature, 441, 65 (2006) https://doi.org/10.1038/nature04705
  30. P. N. Adams, D. C. Apperley, and A. P. Monkman, Polymer, 34, 328 (1993)
  31. R. E. Ward and T. Y. Meyer, Macromolecules, 36, 4368 (2003) https://doi.org/10.1021/ma021343f
  32. A. Yasuda and T. Shimidzu, Synth. Met., 61, 239 (1993) https://doi.org/10.1016/0379-6779(93)91268-7
  33. S. K. Sahoo, R. Nagarajan, S. Roy, L. A. Samuelson, K. Kumar, and A. L. Cholli, J. Am. Chem. Soc., 37, 4130 (2004)
  34. Y. Goddard, R. L. Void, and G. Hoatson, Macromolecules, 36, 1162 (2003) https://doi.org/10.1021/ma021563t
  35. T. Young, M. P. Espe, D. Yang, and B. R. Mattes, Macromolecules, 35, 5565 (2002) https://doi.org/10.1021/ma011278u
  36. R. Mathew, D. Yang, B. R. Mattes, and P. Espe, Macromolecules, 35, 7575 (2002) https://doi.org/10.1021/ma011278u
  37. M. Zagorska, A. Pron, and S. Lefrant, Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., Jhon Wiley & Sons, New York, 1997, Chap. 4, pp 190