Browse > Article

Micro-Chemical Structure of Polyaniline Synthesized by Self-Stabilized Dispersion Polymerization  

NamGoong, Hyun (Kolon Central Research Park)
Woo, Dong-Jin (Department of Molecular Science and Technology, Ajou University)
Lee, Suck-Hyun (Department of Molecular Science and Technology, Ajou University)
Publication Information
Macromolecular Research / v.15, no.7, 2007 , pp. 633-639 More about this Journal
Abstract
A variety of NMR techniques were applied to the micro-chemical structural characterization of polyanilines prepared via an efficient synthetic method in a self-stabilized dispersion medium in which the polymerization was conducted in a heterogeneous organic/aqueous biphasic system without any stabilizers. Here, the monomer and growing polymer chain were shown to function simultaneously as a stabilizer, imparting compatibility for the dispersion of the organic phase, and as a form of flexible template in an aqueous reaction medium. Polymerizations predicated on this concept generated polyanilines with a low defect content: solution state $^{13}C-NMR$ and solid $^{13}CDD/CP/MAS$ spectroscopy indicated that the synthesized HCPANi and its soluble derivative, HCPANi-t-BOC, evidenced distinctly different NMR spectra with fewer side peaks, as compared to conventionally prepared PANis, and the complete structural assignments of the observed NMR peaks could be determined via the combination of both 1D and 2D techniques. Ortho-linked defects in HCPANi were estimated to be as low as 7%, as shown by a comparison of the integration of the carbonyl carbon resonance peaks.
Keywords
polyaniline; self-stabilized dispersion polymerization; NMR characterizations; chemical microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 B. Wessling, in Handbook of Nanostructured Materials and Nanotechnology, H. S. Nalwa, Ed., Academic Press, San Diego, 2000, pp 501
2 A. G. Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. Somasiri, W. Wu, and S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 173 (1985)
3 A. Yasuda and T. Shimidzu, Synth. Met., 61, 239 (1993)   DOI   ScienceOn
4 S. P. Armes, in Handbook of Conducting Polymers, T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Eds., 2nd, Marcel Dekker, New York, 1998, pp 423
5 J. Huang and R. B. Kaner, Angew. Chem. Int. Ed., 43, 5817 (2004)   DOI   ScienceOn
6 J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007)   과학기술학회마을   DOI
7 N. Spetuseris, R. E. Ward, and T. Y. Meyer, Macromolecules, 31, 3158 (1998)
8 J. Louie and J. F. Hartwig, Macromolecules, 31, 6737 (1998)
9 S. A. Ashraf, L. A. P. Kanemaguire, M. R. Majidi, S. G. Pyne, and G. G. Wallace, Polymer, 38, 2627 (2003)   DOI   ScienceOn
10 X. X. Zhang, J. P. Sadighi, T. W. Mackewitz, and S. L. Buchwald, J. Am. Chem. Soc., 122, 7606 (2000)
11 K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, and S.-H. Lee, Nature, 441, 65 (2006)   DOI   ScienceOn
12 P. N. Adams, D. C. Apperley, and A. P. Monkman, Polymer, 34, 328 (1993)
13 R. E. Ward and T. Y. Meyer, Macromolecules, 36, 4368 (2003)   DOI   ScienceOn
14 T. Young, M. P. Espe, D. Yang, and B. R. Mattes, Macromolecules, 35, 5565 (2002)   DOI   ScienceOn
15 S. Kaplan, E. M. Conwell, A. F. Richter, and A. G. MacDiarmid, J. Am. Chem. Soc., 110, 7647 (1988)
16 M. Mehring, Principles of High Resolution NMR in Solids, Springer-Verlag, Berlin, 1983
17 K. Mallick, M. J. Witcomb, and M. S. Scurrell, Gold Bulletin, 39, 166 (2006)   DOI
18 A. Raghunathan, G. Ranbarajan, and D. C. Trivedi, Synth. Metals, 81, 39 (1996)
19 C. A. Fyfe, in Solid State NMR for Chemists, C. F. C Press, Guelph, Ontario, 1983
20 A. Yasuda and T. Shimidzu, Synth. Met., 61, 239 (1993)   DOI   ScienceOn
21 S. K. Sahoo, R. Nagarajan, S. Roy, L. A. Samuelson, K. Kumar, and A. L. Cholli, J. Am. Chem. Soc., 37, 4130 (2004)
22 M. Zagorska, A. Pron, and S. Lefrant, Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., Jhon Wiley & Sons, New York, 1997, Chap. 4, pp 190
23 A. J. Heeger, Rev. Mod. Phys., 73, 681 (2001)   DOI   ScienceOn
24 C. Lee, Y. H. Seo, and S.-H. Lee, Macromolecules, 34, 4070 (2004)
25 G. G. Wallace, G. M. Spinks, L. A. P. Kane-Maguire, and P. R. Teasdale, in Conductive Electroactive Polymers, CRC Press, New York, 2003, pp 51
26 S.-H. Lee, D. H. Lee, K. Lee, and C. W. Lee, Adv. Funct. Mater., 15, 1495 (2005)   DOI   ScienceOn
27 A. J. Epstein, in Organic Electronic Materials, R. Farchini and G. Gross, Eds., Springer, Berlin, 2001, pp 3
28 Y. Goddard, R. L. Void, and G. Hoatson, Macromolecules, 36, 1162 (2003)   DOI   ScienceOn
29 W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid, J. Chem. Soc. Faraday Trans. 1, 8, 2385 (1986)
30 A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somarisi, and A. J. Epstein, in Conducting Polymers, L. Alcacer, Ed., D. Reidel, Dordrecht, 1987, pp 105
31 R. Mathew, D. Yang, B. R. Mattes, and P. Espe, Macromolecules, 35, 7575 (2002)   DOI   ScienceOn
32 J. Hwang, S. Virji, B. H. Weiller, and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003)   DOI   ScienceOn
33 J. P. Sadighi, R. A. Singer, and S. L. Buchwald, J. Am. Chem. Soc., 120, 4960 (1998)
34 J. Huang and R. B. Kaner, J. Am. Chem. Soc., 126, 851 (2004)   DOI   ScienceOn
35 A. J. Epstein, in Organic Electronic Materials, R. Farchini and G. Gross, Eds., Springer, Berlin, 2001, pp 3
36 E. O. Stejskal and J. D. Memory, High Resolution NMR in the Solid State, Oxford Press, New York, 1994
37 A. M. Kenwright, W. J. Feast, P. Adams, A. J. Milton, A. P. Monkman, and B. J. Say, Polymer, 33, 4292 (1992)